{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [ { "data": { "text/html": [ "\n", "
" ], "text/plain": [ "" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" } ], "source": [ "from IPython.display import HTML\n", "\n", "HTML('''\n", "
''')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Results: Right Insula" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 1, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAekAAADJCAYAAAAHFcoVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAD5m0lEQVR4nOydd3hUZdqH7zN9Uia99wIJhE6oIh0BG4qusvZP17r2inVF7Cui7lqxLLsqrqJgQSmCBQGRGlJIIb0nk55JZiZTvj/YczZlkswkE2B3c19XLjGZcubMOe/zPu33CHa73c4wwwwzzDDDDHPGITvdBzDMMMMMM8wwwzhm2EgPM8wwwwwzzBnKsJEeZphhhhlmmDOUYSM9zDDDDDPMMGcow0Z6mGGGGWaYYc5Qho30MMMMM8www5yhDBvpYYYZZphhhjlDGTbSwwwzzDDDDHOGMmykhxlmmGGGGeYMZdhIDzPMMMMMM8wZyrCRHmaYYYYZZpgzFMXpPoBhhhlmmGGGAbDb7ZhMJtrb27FarXh7e6NWq0/3YZ1Who30MMMMM8wwvWIwGMjMzCQnJ4f6+nqampqw2WwEBAQQGBhIcnIyY8aMQalUuvzadrudoqIiDh06xJEjR8jOzsZsNuPv7099fT0AHh4eBAQEMHLkSFJSUhgzZgyhoaEIguDuj3pGIgxPwRpmmGGGGaYzRqORHTt2sG/fPrKysvD19aWurq7Xx2s0GiZMmMA555zD5MmTkcn6zqTabDZ+/fVXvvjiC3Jycrr8TaVSERoaSmtrK83NzVgslh7PDwgIYNKkSVxwwQXExcUN7EP+hzBspIcZZphhhgGgpaWFr7/+mm+++YaWlhYAZDIZU6dOJSoqitDQUHx8fBAEgbq6OiorKzl69CiFhYXSY6Ojo1mwYAFnnXUWQUFBXV6/pqaGffv2sWXLFpRKJSUlJXh5eTF9+nQmTZrE+PHj0el00uPtdjutra1UV1eTmZlJZmYmGRkZ0rEBjB8/niuuuILRo0efgjN06hk20sMMM8ww/+Po9Xo2b97M1q1bMZlMAIwaNYrzzz+fSZMm4eXl5fB5ZrMZmUxGY2Mju3fv5sCBA6Snp0t/j4qKIiEhAbvdTmlpKenp6dTX16PT6Rg3bhyLFy9m0aJFaDQap4/VbrdTXFzM9u3b2bFjBwqFgvb2diZOnMj1119PVFTU4E7GGcawkR5mmGGG+R+lrq6Ojz/+mF27dklh5cmTJ/O73/2O0aNH95n3rampIScnB7PZzKRJk9DpdAiCwIEDB9i5cyc7d+6koqICf39/EhMTqa+vl37OPfdc/vznP3cJi4tes1wux8PDw6njNxgMfPvtt3z22We0t7cjk8lYsmQJV1xxBT4+PoM7OWcIw0Z6mGGGGeZ/jPb2dj7//HM2bdqE2WxGEATOPvtsLr30UqdyvOXl5Zw4cQKlUklzczNarZbU1FQ8PT2lx/zzn//kzTffZNKkSVxyySV4enry66+/smXLFq6//nouvvjiLq9ZUlJCWVkZVquVCRMm4O3t7fTnaWpq4qOPPmLr1q3Y7Xa0Wi2XXXYZF154ISqVyvkTcwYyXN09zDDDDPM/gtVqZfv27Xz00Uc0NTUBMHPmTK655hoiIiKceg29Xk9+fj4ajYbx48dTWlpKRUUFCkVXcxISEoK3tzdhYWGcddZZAOzZswfAYXi7oaEBo9GIQqEgKyuL1NRU5HJ5n8dit9sxGAz4+Phw2223cf755/P+++9z6NAh1q9fz3fffcd1113HrFmz/mOrwYeN9DDDDDPMGcC0adP485//zOzZs93+2na7nYMHD/LNN99w+PBhAJKTk7n++usZNWqU9DiTyURTUxN+fn4OW6qam5spKipCLpczZswYNBoNNpsNhULRwwiKRttqtXZ5fcChd2s0GvH29iYkJITCwkJKSkr69OptNhvZ2dnU1taSlJREaGgo0dHRPPnkkxw+fJj333+f4uJiXnzxRbZv385tt91GWFiYC2fNMdOmTUOv1yOTyfD09GTu3Lk888wzXaII7mTYSA8zzDDD/BdTVFTEe++9x9GjR6mqqiI5OZlbbrmFmTNn9jCsdXV15OXlAeDv709oaCj+/v7IZDLq6+vJzs7GarUyfvx4yShZLBYsFksPT1r0gju3UJnNZgCHAiWisY+MjKS+vp6amhpCQkJ6zU/X1NRQW1uLzWYjJyeH4OBgKcctVorv2LGD9evXc/ToUW6//XZ+//vfc9FFF/U4Vlf54IMPmD17NjU1NVxxxRX85S9/YeXKlYN6zd4YNtLDDDPMMP+FmM1m1q9fz9dff43dbsfT05Nly5YxatQoKfzcnfb2dunfRqORrKwsBEFAoVDQ0dGBXC4nJSWlS1GW1WpFEASXPOm+VMRkMhkxMTEcO3aM3Nxcxo8f3+O17XY7ZWVleHp6olKpaGho6PE6crmcJUuWMGPGDN59910+//xzXnvtNX766Sduv/12kpKSej0GZwkODmbu3LlkZmYO+rV6Y1i7e5hhhhnmv4wTJ05w11138dVXXyEIAhdccAHr1q3jyiuvlDxlR0RGRiKTyfDw8GD06NHExsbi6+uLUqkkJCSEiRMnEhAQ0OU5VqsVuVzew5A68qT7MtIWi4W2tjYA/Pz8CAkJoampiaKioh6PLSsrw2Aw4Ovr269wio+PD/fddx8XXnghvr6+FBUV8cADD/DWW29J7zdQKioq+OGHH4ZUUGXYkx5mmGGG+S/BarXy2Wef8cknn2C1WomKiuLee+8lMTERAC8vLxoaGqipqSE4OLjH89VqNTExMZSUlNDQ0EBMTIxT7+nIUDrypPsKd3f/3YgRIzAYDJSUlKDVagkNDQVOFq4VFhai0WiIjY3lyJEjqNXqfo11UlISqamplJeXs2nTJr755hvKy8u54ooruuTlneGGG25AEAQMBgNnnXUW9913n0vPd4VhT/oUYbFYyMjI4MCBAxw6dIjDhw9TWFjIcAfcMMMM4w5MJhNPPvkkH330EVarlQsvvJBXXnlFMtAAgiBw8cUX88UXX/T6OuHh4chkMkpKSrDZbH2+p91up729Ha1W2+NvfXnSzrRFiaF1pVJJTk4OmZmZZGVl8dxzz3HkyBFGjx6NTCZDEIQuKmWOsNlsZGVlkZCQwLXXXssrr7zC5MmTOXr0KA8//DC//PJLv8fTmffee4/c3Fw2btxIfn6+pDM+FPzPe9INDQ3k5eVRU1MjFUqEhIS4pVKvoqKCffv2ceLECQ4fPuwwtBIeHs6cOXOYM2eO0y0QwwwzzDCdMZlMrFq1ivT0dHx8fHjggQcYP368w8dOmzaNTZs2UVBQQHx8fI+/KxQKQkNDKS0tpbW1tU8D2N7ejs1mc6hINtCcdGdETfDS0lKqqqoAuPzyy9m8eTNHjhxhypQpUgtWX2zdupWoqCgpLB0bG8vjjz/O3/72N7788kteeukllEol06ZNc+q4RGbMmMHvfvc7Vq9ezfvvv+/Sc53lf9JI6/V6du/eze7duwEc5mg8PT0ZM2YMZ511FlOnTnXaaNvtdg4fPszq1avZv38/vr6+0k42OjqakJAQbDYbVquVwsJCKioq2LBhAxs2bGD06NFcdtllTJo06T+2p2+Y3hH7SwsLCykqKqKoqEgq1BG/b5VKha+vL6GhoajVanQ6HTqdDm9vbzw8PPDw8ECr1Xb5t1qtHr5e/kuwWCwYjUbp/xUKRb+VyB0dHTz99NPU19cTEBDAM88802PDbzAYUKvVUqvUbbfdxvr163n88ccdXjs+Pj6UlpbS1NQkGWmDwUBpaSnJycldXhdwuD664km3tbUhCEIXr1/Ew8ODpKQkoqKikMlkqNVqxo4dy+OPPy61ifWnUPbTTz/x2GOPdfmdQqHghhtuQKlUsnHjRp5//nmeeOIJJk6c2OdrdefGG29k2rRpZGZmkpKS4tJzneF/xkgbDAZ+/vlnfvrppy6VeD4+PkyYMIGQkBDq6+uprq6muroag8HA/v372b9/P7GxsbS1tZGQkMD1119PSEiIw9aFPXv28NNPP7F582ZaW1sRBIGQkBDpSwwJCenyHKvVSnp6Oj/99BN79+4lKyuLJ598ktTUVBYtWsSMGTOGF9//cEpLS9mzZw/79u2joKDAqedUVlbS1NRERUWFw7/b7XbpulAoFFitVslge3l5ERoaSmRkJBEREdJPf+HAYc4Mrr766i7/f+edd/LQQw/1+ni73c4rr7zC0aNH8fX15dlnn+1hoK1WK4cOHUKtVhMQEEBCQgIxMTFoNBoKCgpISEjo8bqi2ldra6v0u9raWr777rsuRloURHFkpF3xpEtKSrpUljuisyHWarWsXLmShx9+mHPPPbfffLQgCA77vgVB4JprrsFkMvH111/zzDPP8Oqrr7oU1QwICODSSy/llVdeYd26dU4/z1n+q4203W4nLy+PrVu38vPPP3fZxU2ZMoXZs2eTmpraY1dnt9vR6/X89ttv7N27l9raWn766Se++eYb3n33XSZPnkx0dDSBgYE0NDRQW1uLXq/HaDSSnZ2NXC4nOTmZP//5z0ydOrXX45PL5UyYMIEJEyZw88038+2330phqOeee46IiAguvfRS5s6dO+i+vmFOHaWlpfz444/s3buXsrIy6fdarZbk5GRiY2OJi4sjJiZGCtOJtQkmk4mGhgZaW1upr6+nubmZ5uZmWlpaaG9vp6GhgV9//ZWUlBSMRiOtra2S6pLBYECv1zushg0ODmbKlCmkpqZKIhTDnFns37/f5ed88803/Pzzz2g0GlavXu1wuERDQwNWqxWj0Uh5eTkWi4WRI0cSGBgoecLdETeBnZ2E5ubmLlKdVquV6upqtFqtQwlPR550R0cHQBeD2dDQQHV1NcHBwfj5+Tn92QMDA7nhhht47bXXSE1N7fOx8fHxHDhwgLPPPrvH3wRB4MYbb5SGhKxZs4YXX3yx1zXX0ff0/PPPO33crvJfufIbDAZ++ukntm7dKo1QAxg7diyLFi1i+vTpDgsdRARBICgoiPPOO4/zzjuPxsZG3nnnHTZs2EBNTQ2HDh2ira2NuLg4iouLgZO5k/r6emJiYpg+fTqPP/64SwLvGo2G5cuXc/7557Njxw6++OILysvLefXVV/nHP/7B4sWLWbx4cY/2h2HODFpbW9m9ezfff/89ubm50u+9vb2ZNm0aM2fOZMKECQ53893paxf/66+/MnHiRK666irpdxaLhfb2dtrb22lubqaiooLy8nLpp6ysjJqaGrZs2cKWLVvw9fUlMjKScePGMXbsWOLj450eaDDMmUNOTo6UB73rrruIjY11+Dhx8ERKSgoVFRVUV1cjl8uRy+WS0exOR0cHGo2my2aupKSE6Oho6f+rq6vp6OggJibGYcRPNNKdi8/Ef3eW+xS98fDwcGc+dhdGjhzJyJEj+eKLL7jrrrt6fdyKFSt47LHHmDJlisMNqiAI/PGPfyQ7O5u8vDw++eSTLvfY6WRIjfRQytx1x263k5ubK3nNYqm/TqdjwYIFLF68eMCFWb6+vjz44IPccsst3HPPPZSWljJhwgSuuuoq7HY73t7e7N69mw0bNhAQEMCf/vQnl8ThO6NSqTjvvPNYvHgxu3fvZuPGjZSUlLBhwwb++c9/smDBAmbNmsXEiRPdHgo/1XJ3/+nY7XbS09PZvn27JGMIJz3mWbNmMXv2bMaMGePWKEhmZiaTJk3q8juFQoG3tzfe3t4EBwf3yOvZbDby8vI4ePAgx48f59ixYzQ2NpKRkSE9JiQkhPj4eOLi4oiPjyc2Npbg4ODhdMsZSlNTE88//zwWi4ULL7yQWbNm9fpYk8mEXC5Hq9WSkpJCbm4uFRUVpKenM336dIfPMRqNko62SE5ODhdeeCFw8poqLS3Fw8OjRxpPxFHnihj67hyeFg23uGa7gkajYc6cOXz22WdkZGQwZswYh4/T6XQsXryYv//979x0000OH+Pp6cm9997LI488wqeffsqkSZPOiBnV//GedFtbGz///DNbtmzpEuYbN24cS5YsYfr06U55L86g0+l4/PHHufPOO8nMzCQsLAxfX1/q6ur45z//CcA999wzYAPdGYVCwbx585g7dy7p6el899137Nu3j4yMDHbs2EFISAhLlizh/PPPd2vo8lTK3f2notfr2blzJzt27KC6uho4uRMXUygzZsxwunrVVXJycvj973/v0nNkMhlJSUmSwlJLSwsZGRmkp6eTlZVFSUmJVIuxb98+lEolHR0daLVaYmNjSU5OZvbs2SQkJAwb7TOEt956C71eT3JyMv/3f//X52PNZjNWqxWVSoVcLicpKYmGhgZKS0t7/T6bm5uBf+eaGxsbqaiokDaANTU1GI1GoqOj+11fRYNst9slw93ZSAcGBlJbW0teXh42m82lzaFGo0GlUnHllVfyzjvv8Mwzz/S6/p577rm8+uqrbNy4kUsvvVQ6ppaWFknAZcyYMVxyySVs3LiRNWvW8Je//OW0R5n+Y410SUkJW7ZsYdeuXQQHB1NSUoJOp2PhwoWcc845TnnNNpuNtrY2Ojo6EAQBLy+vfr2e2NhYpk6dyv79+9m5cyeXXHIJu3btwmazMXPmzF7bHjpjt9ulEI+4w+3tfQVBYNy4cYwbN466ujp27tzJtm3bqK6uliT/rrnmGubPn+/WBfRUyN39p5GXl8fnn3/O3r17pcUmMDCQhQsXsmjRIofiEO7GbDYPetHw9vZmxowZzJgxAzgZLi8vL6ewsJDi4mLy8/MpKiqioaGB48ePc/z4cTZt2kRERARz585lzpw5bhlUMMzAOHDgAL/88gtqtZoHHnigzzXLbrfT2NjYZY2RyWSUlZWRmpqK0WjEZrP1KLyqr69HLpfj4+OD3W7n3Xff5aKLLkIQBDo6OigoKEAulxMZGdnre3fvsRbvme4SojqdjuTkZDIyMsjOzqa+vp64uDinnA+x2rujo4MrrriCtWvX8thjjzksJBMEgTvuuIPnn3+ebdu2MWXKFAoKCjAYDKhUKry9vRkzZgxXXnklR44cIT8/n7fffpt77rmn3+MYSv7jjHRhYSEbNmxg37590u8CAgJYsWJFv16zzWajtbWVxsZGGhsbaW5ulsIvcrkcjUbDuHHj+m20X7x4Mfv372fHjh1ccskl/PDDDwAsXLiw3+O32Wzk5uZSXV2NWq3GZDJJGwQfHx/8/PzQ6XQOb7yAgAAuu+wyLr30Ug4fPszHH39MXl4er7zyCl9//TV/+MMfeg33uIood9ebxu//Cna7nbS0NDZu3EhaWhpwMsoxffp0Fi1axIQJE/qtLHUnCoUCs9ns1hm5CoWCmJiYHupSTU1NFBYW8ttvv/Hzzz9TXl7ORx99xEcffURSUhJz5szh7LPPxtfX123HMkzfGI1G3nrrLQCuuuoqaWNotVo5fvw4giDg4eFBUFAQHh4eVFRU0NHR0aUjpaqqit27d3PRRRdhsVh6XL9ms5nW1lb8/f0RBIEPP/wQrVYrFV0VFBTQ0dHBiBEjnIpSiu8rGm1H94uPjw+pqakUFRVJ3Q0TJ050KiLl4eFBbW0tZ511FkVFRbz77ru9hrTlcjn33Xcf9913H5mZmUyZMoWwsDCampqkAjeFQsH999/PXXfdxa5du5gyZUqf6YSh5j/GSBcVFbFhwwb27t0LnMzdLliwgPPOO69X6Tqr1UprayvNzc00NTXR2NiI1WpFo9FgMpnw9vZGp9OhUqkwGAxUV1eTm5vbr6GbNGkSCoWC8vJy2tvb8fb2JiIiwmGPX3fEwg2dTkdgYCAWi4XW1laamppobW2lvLwcOOnt+Pr64uPjg7e3d5ebQSaTkZqayuTJk/nxxx9Zv349+fn5PPzwwyxYsIDbbrttwIv4qZS7O5Ox2Wzs3btXUhSCk7nmpUuXsmzZMvz9/U/LcU2bNo3Nmzdz2WWXDfl7ie2JEyZM4IYbbuDo0aP89NNP7Nu3j5ycHHJycnj33XeZPn06y5cvd8vAgmH65uOPP6ampob4+HguuOAC6fe1tbXU1dUBJ9dGsT7Cbrfj7+8vebxms5mXXnqJq666CrPZTFBQUI/3qKurw263o9VqefbZZ4mMjOTWW28FToa9q6qq8PHx6Tea0tlzhr6NNJxsy0pKSsLb25u8vDwyMjKYOHFiv5tgsQi4ra2Nyy+/nFdffZWvvvpKyp93xmw2U1BQwEUXXcTGjRtJSEhg1qxZ7N+/v0sOPTIykhtuuIE333yTdevWMXny5D6LjYeSM95I6/V63nvvPUm2TaVSsXTpUpYvX95jobRYLDQ0NNDU1ITJZKK+vl66MERv1dfXVzJ+3QeKiwLver2ewMDAXo9JLpcTHh5OSUkJ5eXl1NbWUltb22ulpIjJZKKmpkZqxu/sLXf38puamqS8EJxcMDUaDTqdDn9/fzQaDYIgMG/ePGbMmMHmzZv57LPP2LlzJyUlJTzyyCN9fobeeO+995g9ezb79u3j9ttvp76+3qUq9f8GsrOzefPNN6W+Zh8fH5YtW8a555572ovoli9fztq1a9mwYQMrVqw4ZTliuVzO5MmTmTx5MiaTif379/Pjjz9y+PBh9u7dy969e0lJSWH58uVMmTJlOHc9BBQUFPDll18iCAK33357l/VL/HdcXBxeXl7SeqRUKomJiZE80nXr1jFv3jz8/f2pqKjo0fIkTpcqKCjgs88+Y8WKFV28yMrKSuCkrnZ/33H3wrH+jLRIeHg4bW1tlJeXU1FR0WdIHZDC4iaTCZ1Ox+23386rr77Knj17ukQCW1payMzMxGQyERcXx6uvvsratWulTp3u6+XSpUvZuXMnubm5fPbZZ1xzzTV9HsdQccYaabvdzrZt2/jggw9oa2tDqVSydOlSLrnkki7G2Wq1UldXR01NDQ0NDdKF4OHhIak1iT/9hWYSExM5ePAgJ06cwNfXt89cT1BQECUlJdTX13fZyfX1eU6cOEFLSwujRo3q8doymUw6zujoaGw2Gy0tLVKfrNlslop74GQeJygoiKCgIDQajRTuf/rpp6mrq+Ohhx5i5cqVjBgxou8T3QunQu7uTKOpqYm//e1vfP/998DJfPNll13GggUL3BpeHgxyuZx7772XdevW8fTTT3PrrbcOaDM2GNRqNbNnz2b27NnU19fz9ddf891335GZmUlmZiZRUVFcfPHFzJ07121Fm//r2Gw2/vrXv2Kz2bjgggt63Ne+vr4IgkBDQwPR0dEOIz2ffPIJHR0dnHvuuRw/fhygh3dYW1vLhg0bsFqtPPXUUz1ep6OjAw8PD6c2q909aTG16MwGLjY2Vur5DwoK6jPsrdFo0Gq1kg6GQqHglltu4ZFHHmH06NH4+PhQUlIiRRcSExMJDw9HEAQeeOABHnvsMfLz86VogYggCNx0003cf//9bNq0iUWLFp2WWowhN9IDkbmrrKzkr3/9K8eOHQNOhvhuueWWLouRxWKhtLSU8vJy6csXDZevry+enp4u7+bFqSr5+flkZGRI4u6O0Ol0qNVqLBaLdKH3pphjs9koLCxEr9cTEBDgMMTUHZlMho+PTxexC5PJRFNTE3q9XhK6KCgoIDAwkNjYWGJjY3n55ZdZu3YtBw8eZOXKldx3333MnDnTpfMgMtRyd2cShw8f5qWXXqKlpQWFQsHy5cu57LLLHC4Ozc3N1NTUEBcX1yMacyqQyWTcfPPNHDt2jNWrV3POOedw7rnnnhbv1d/fn2uvvZbLLruMbdu28eWXX1JaWsprr73Gli1bOPvss1m6dOlpr5D9T2fLli3k5eUREBDQQ5UMToqD+Pn50dbW1mPghd1u54svvqCiooK77767S+FWZ2/XYrHw9NNPExwczD333OPQENtsNoxGIxaLxenWwu7hbmfuGYVCQUJCgtR90JezodFoJI0AEU9PTy6//HLWr1/P7NmzaWlpkeRFO6vvKRQKLrnkEt566y3S0tKYP39+l9dOSkpi/vz57Nq1i/fff59HH33Uqc/sToa84uXqq68mISFB+lmzZk2fj9+3bx933HEHx44dw8fHhwcffJBHH31UMtBif97+/fspKSlBpVIRHx/PtGnTmDhxIpGRkXh5eQ14wYqIiCAsLAyTycTRo0e7bDA6Y7VaMZlMmEymPo20zWbj+PHj1NfX4+3tzciRIwd0bIIgoNFoCAkJISUlhRkzZpCcnIyPjw+1tbUcPHiQ3NxcNBoNjz76KAsXLsRsNvPcc8+xcePGAU3b6ix399+KzWbjo48+4sknn6SlpQWdTkdAQABHjhzhtdde49NPPyUvL6/L+WtsbKS8vNzhoPlTybhx43jxxRepra3lkUceobS09LQdi1ar5aKLLmLdunXce++9kpTu3/72N66//nr+8Y9/SB0Nw7hGa2srH330EQC33HJLr7nR8PBwjEajNIgCThrhdevWSQZaDDWLa5AY/bPb7axevZqQkBAuvfTSXj3loKAglEqlU1OfXM1JdycwMBBPT08pfdkbWq1WWgdFp81oNBIUFMTPP/9Mc3MzERERTJo0qYc8bkdHB+3t7dx2221s3bpVKg7tzLXXXotGo+HXX3/l6NGjTh27OxlST9oVmTu73c7mzZv54IMPsNvtnH322dxyyy1dTqrVaiUrK4v6+npUKhUjRowgNDTUrdW1giAwYsQISktLKSwsJDMzkwkTJvTY/YlTX1pbW/s00gUFBej1evz9/R2GuQeKQqEgJCSEkJAQGhoaKCwspLKykoaGBsaOHcudd95JREQE69evZ/369ZSXl/PHP/6xz/c/1XJ3p5u2tjaef/55jhw5giAIXHXVVVx22WUIgoDFYqGyspKioiI2b95MZWUlZ599NkuWLCEgIIDCwkLq6upOeai5O2q1muuuu478/Hxee+01xowZw+9+97vT5rl27u8/dOgQn3/+ORkZGXz66ads3ryZRYsWsXz58lPSrvbfwubNmzEYDIwbN65X8RH4t962KApitVp57bXX8Pf358Ybb+ziHERERNDW1kZOTg6JiYl88MEHdHR0sHTp0j4LYDUaDTabzalNf/fHOOqR7gtBEIiIiJC6YTqrnXUnPj6e48ePU1BQwIkTJ4CTxjsoKIjo6GiH077g5IZbo9EQGhrKo48+yhNPPMGDDz7YpYXX399f8srfeecd/vKXv5zSCNoZMU/aYrHwxhtv8P7772O327n22mt54IEHuhhos9lMWloa9fX1BAcHM3XqVGnuqbsRBIHo6GiioqJobW2VvvTOiEbaYDBIIfHuhWM1NTWUl5ej0+lISUkZMv1tPz8/Jk6cSEJCghQBaGlp4dJLL+Xhhx9GpVLx/fff8/jjj9PS0jIkx/CfRktLC4899hhHjhzBx8eHp556issvv7zL4IqoqCjOPvtsHnjgAVavXo1CoWDlypVUVFSg1WrR6/VdhgecThISEnjhhRcICwvjoYceYseOHf3OAh5KBEEgNTWV5557jhdffJFp06ZhNpvZsmULN954I2vWrHGoMT5MV1paWvjyyy8B+pWpFHW4xTa9559/nqioKK699toe0Ttvb2/8/f1pa2vjjTfeoLS0lCVLlpCcnNznOmUwGOjo6HBp3RUf66onDUipwc6DPhyh0+mYNGmSNFMhICCAuLg4Jk2a1GetkF6vp729HX9/f3x8fLjrrrt49dVXu+iNA1x44YXS+M4tW7Y4ffzu4LQbaYvFwvPPP8/WrVtRKpU89NBDXHrppT0uKrHoKjIykuTk5FOyk4mNjcXHx4eqqir0en2Xv3X2pMVj6bxzNJvN5ObmolQqpeHkQ4kgCERGRjJq1Cgp4mC1Wpk5cyYvvPAC/v7+ZGRkcN9990ltXv+rNDQ08PDDD5OXl0doaChr1qxhwoQJfT7H09OTCy64gJUrV7Ju3TqOHj1KR0dHj+vidCKTyTjnnHN44YUXKC8v58EHH+wi/Xm6GDVqFI899hh//etfmTdvHgA//vijJCwhVgwP05MvvvgCo9HIpEmTGDVqVJ+PrampwcPDAz8/P5599lkmT54sKWs5IjY2FpvNRnl5Obfddhupqan99ry3tLSg0WicakEcaHV3ZzqrlfWHWMmekpLCmDFjCAoKwtPTs1cjbbPZqK+vlybIwUmPfMqUKZKCpIhKpeKGG24gPDycLVu29LtpcCen1UjbbDbWrl3L/v378fb25tlnn3XYNC7qyPr5+REfH3/KCmRkMhnJycnIZDIqKiq6XCidjXT3nAsg5UYSEhKGTCLSEUFBQURFRSGXy6W8UWJiImvWrCE+Pp7Kykruv/9+qSjvf436+npWrlxJcXExUVFRPP/8871qDzsiLCyMZ599FplMxgcffHBGKrJ5eHhw3XXXcd999/HVV1/x5z//+YzIB8fExEiV6eeffz4qlYo9e/Zw22238e677w5HebrR1NTE119/DcCVV17Z7+PF9s21a9dy1llnsWTJkj4f39LSwqZNm3jxxRcZMWJEvykSs9mMXq/H09PTKSepc/tr5/8fiMMykJoaOCncEhoa6vBvzc3NWCyWHkOLLrnkEo4cOUJtbW2X30+bNo2AgAAqKir47LPPBnQ8A+G0GWm73c6bb75JYWEhWq2WVatWdZlT2pnGxkZaWlpOi+C/RqMhLCyM+vr6LotIZyPdPZxjt9spLy/Hy8vrtOTewsLCaGtrk8QN4GQRxgsvvMC0adNobW3liSee4Ntvvx3wxf+fSHt7O6tWraKiooL4+Hiee+65AU0VUygU/OEPf2D58uW88cYbvPnmm2RkZPRaZNiZU3m+w8LCeOSRR5gzZw6PP/44e/bsOWXv3RfBwcHcfPPNvP322yxYsACr1cqXX37JjTfeyKZNmwY0aOG/kU2bNmEymZgyZQojR47s9/E+Pj784x//IDY2tkeVsiO++eYbLrjgAmkt6w9x/XNlnCT0bMFyxUiL7znQGou+jHRNTQ1Aj7oSmUzG8uXL2bRpU5ffC4Ig6aR//fXX0vOHmtPSJ22323nvvffYunUrarWaJ598ss8Se/HLPV29qmI7V+cKw85GWsydi0baYrFgtVrx8PA4LW0xYo68e75Uo9HwyCOP8Le//Y1Nmzbx5ptvkpmZyR133PFfP19YTKsUFBQQFhbGU089NWiRltmzZ+Pp6UlzczOHDx/m73//uyTzKtLZKHe/FkQ1qAkTJjB16tQh68GcOnUqo0aNYt26dezbt4+77rrrjOhfDgwM5O677+bCCy/kgw8+4OjRo7z//vt88803XHvttZx99tn/s6IoTU1NbNu2jejoaKe8aKPRyD/+8Q/mzp1LQkICR48eJSUlpdf72mg0snfvXl5++WWnj0msuXF2HR5sdTecPA+enp4ubwxEOjo6HB6vzWajtra211nYM2bMYMOGDZIgjMiIESOYPXs2P//8Mx9++CH33nvvgI7LFU6Lkf7444/58ssvUSgUPPzww/3KcDrq6TuVOMqLdC4cc5STBuea9k81MpmM66+/nsTERP7yl7/w888/U1BQwMqVK3uVV/1Px26389e//pXDhw/j4+PDqlWr3KKi5uvri06nQ6vVsmzZMpfrJOx2O7W1tRw+fJh169bR2trK/PnzmT9/vts3pN7e3tx77718++23PPvsszz66KNDVsjoKvHx8Tz11FMcPnyYDz74gOLiYv785z+zefNmbrjhhv/6Hn1HfPXVV7S2tjJq1CgSEhL6ffwbb7zB3LlzWbhwIYWFhZSVlZGRkcGIESMcXuuHDx9m6tSpLm3WRCPt7HUz2Jy03W6Xpm0N5H41Go29blLq6+uxWCxERkY6XKcFQeDOO+90aHOuueYa9u7dyw8//MBFF13Ua+W4uzil4W7Rg/7kk0+QyWQ88MADTJ48+VQewoAQReg7X5xiH6HBYHC4U5TL5aet8teZzczs2bNZu3Yt0dHRlJWVce+997Jr165TcHSnno8//pidO3eiUql44okn3OaxCoJAWFgYFoulS2+qK88PDg5myZIlPPHEEzz66KM0NTVx3333sWHDhiHJI5977rnExsaecTUJgiAwefJkXnvtNe688078/f3Jy8tj5cqVvPnmm06lEv5baG1tlXLRzmi079y5E5lMxqJFixAEgfj4eJKTk2lvb+fYsWM9cqsAx44dY+LEiS4dl7iuuOosDdSTbmxsxGAwEBgYOKA8dnNzc69jK6uqqlAoFH2mI0eMGOFwsxwSEsK5554LnGyPG2pOmZHu6OjgpZdeYvPmzdIkkoEqYZ1qTCYTNputy65TNNhWq7VHTloul/cIj59qOjo6+hW3iIyMZM2aNcyfPx+z2czatWt57bXXTutxu5tt27bxySefIAgCDz30kFO5PVcIDQ1FqVRSVFQ06PPm4+PD5Zdfzpo1awgMDOSJJ55g48aNPdpBBktSUpIkC3mmIRqbt99+mxUrVqBQKPj222/54x//eMZtLIaKb775hvb2dsaPH99rnY5IR0cHmzZt4pZbbuny++DgYMaPH49cLicnJ6dHhXNubq7L94Ko5OjI6Duit3C3MxEni8VCYWEhAFFRUS4dp4jBYHCYb+/o6KC+vh5PT88BD8248MILEQSB3bt3D3lR5ikx0k1NTTz66KOcOHECjUbDk08+yezZs7FYLGRlZZGRkUFOTk6vzxe/7NPV9yl6y52LF8QLrXPPYOfj8/T0xGAwnPJjbmlp4ZNPPuH111/vcyGurKzk2LFjHD9+nBtvvJE77rgDpVJJdnY299xzjzRc4j+Zo0eP8sYbbwBw2223MXXqVLe/h1KpJDExEYvF4rCffiCoVCoWLVrEmjVrsFgsrFy50m2vDSerrEUdY3dQWlra5/07EDQaDVdeeSVr164lPj6empoaHn30Ud54441e5Xf/GzAajXz11VeAc150bm4uqampDsO6Op2OpKQkrFYrubm50u/NZjOCILicUvH29kYQBKqqqigpKenXo3Y23G2z2WhqaqKuro7a2lqKioo4cuQILS0thIeHD3ioTW9GuqmpCbvdPighopCQEKZOnYrFYmHr1q0Dfh1nGHIjXVBQwN13383x48exWq28+OKLTJgwAbvdTnp6OrW1tTQ3N1NVVdVFe7Uz27dvZ9OmTV2qlU8VJpOJxsbGHm0HjjzpzhelTqfDZrOd0mPetWsXjz76KFqtlttvv51ly5Y5fJzVaqWwsFCaqZ2WlsacOXN4+eWXkclklJaW8sADD7ikGHemUV1dzYsvvojNZuPSSy/ttx1lMAQFBREQEIBer3dr37RCoWDFihXcfffdvPfee3z22WduqcvQ6XRu7fM8dOjQkPXex8bGsmbNGq666ioUCgXfffcdd9xxRxej89/Erl27aGlpITk5mbFjx/b7+OLi4l6rl+GktK+fnx/Nzc1S+q22trbP5/SGIAiMGTMGjUZDYWEhR48epa6urt9IT1/h7o6ODnJyckhLSyM3N5esrCyKi4sxGo1ERUU5Nf63r/d15CSJnu9g61LOP/98AL799lu3R7s6M6RG+tChQzz44IPo9XqSk5P585//TFxcHICk1iRqUQO9hlGuuOIKRo0axdNPP83WrVuH9IR0p7CwEJvN1kOSTjTSnY+l8wURERGBXC6Xnj+U2Gw23n//fQ4cOCCpO3l7e/eaj2lsbKSjo4OYmBiSkpKk2djigrhgwQLMZjPPPPMM33333ZAe+1BgMpl49tlnaWlpYfLkyQ4HErgTQRBITExELpeTl5fn9uszMjKSp59+msrKSt57771BG2pxIIG7qK+vH1J5VIVCweWXXy551dXV1Tz44INs2rTpv66F8IcffgDgvPPOc6rwND09vd+wtUajwcPDQzpXra2tTrdddUetVjN58mTCwsJobm4mIyODI0eOcPDgQSoqKrqsdc5Ud1ssFmpqaqThRklJSYwbN46ZM2cOWhMjKCjIYZuUWN8w2PnQ48ePJyoqivr6evbt2zeo1+qLITPS2dnZPPvss5hMJhYsWMCzzz7bpYy+rq4Og8FATEwM3t7eqNXqXotD1Go1qampXHfdddTW1nLffffxyy+/DPkNWl9fT01NDTqdrsciJHrVYrsVdK16VKvVREZG0t7ePuTyh6+99hparZYHH3wQjUZDXV1dnxWRbW1tqNVqdDodISEhCIIgjcBUq9XcddddXHHFFdjtdt54440e/YJnMmIlt9hqdf/99w+52hucXAjj4uIwm81kZma6vWhQLpdLKYm1a9cOaiMgl8tPq2ToQImNjeWll15i2bJlWK1Wvv76a5555plTqv40lFRWVpKdnY1Go+lTo1vEYDBQVVUlOT6O6OjooK6uDpPJJK1PgzHScHKdGzlyJJMnTyYuLg5vb2+MRiN5eXld0ijOiJmIIXdPT0/CwsIIDQ3Fz8/PLYqSAQEBkuPnKQjSz9233sp333xDYid97oEgCILkTYuFfkPBkKxeJSUlrFq1CrPZzKJFixz2ZYpfnFwuRyaToVaraWho6NXwhoSEoFQqmTlzJqtWrSIjI4OHHnrI7bkwkcbGRjIzM5HJZA4HnIsXkc1mk8QXun/GqKgovLy8KC0tdWsOsDOHDx+mvb2d3//+9wiCQF1dHQ0NDfj5+fWac2pqasJsNks5JplM1uXzCYLA73//e+68804EQeD9999n7969Q3L87ubrr7/mxx9/lKaBDWYxcpXw8HBCQ0NpbGwkOzvb7ZtIQRC49tpriYuLY82aNYN6fbvd7jaPXxCEU+bRKpVK/vCHP/Doo48iCAL79+/nrrvucmvO/nTx448/Aid7dJ3RLfjyyy/77CUXN4xms5nY2Fjp9waDYcB53s54eXkRHR1NcnIy06dPR6fTUVpa2mOD2peYiVwux8PDg8bGRrdvbHUKBW+89hoe3c6P2ImROn36oK/b+fPn4+npyfHjx4fsGnS7ka6treWJJ56gtbWVadOm8cc//tHhRSTu6kQDp9PpsFqtNDY2Onzd8PBwvLy8KC8vRyaTccstt3DPPffw9ttvc+DAAbd+hqamJvLy8gAYO3asw4VeEIQen6F7/6BcLmfs2LF4eHhQXFxMRUWFW4/TbDazfv16brrpJuCkV5+Xl4dcLu81l2OxWKQcu0KhwG63YzabHfY+Llq0iGuvvRaANWvWSOfkTCUjI4MPPvgAgLvuuuuU932LE9TE/HR2dvaQtOFdfPHFBAUF9dAXdoXExES3LSqn0kiLTJ8+nWeffZbExERqamp44IEH2Lp1639s+Ntut0uhblHfvC+2bdtGYWFhr3UnTU1NZGZm0tTURGhoKOHh4dLfWltb3WKkO6NQKFCr1X2Gu3ubgiV2SAxF/Y4M6H4HFuTlUVRQQOLIkVIEcSAYjUaUSiULFy4ETn4nQ4FbjbTBYOCJJ56grq6O0aNH8+CDD/YathDzpWKxmFjI0JvYvkwmk3Ivx48fx2w2ExYWxqpVq/jss8/YvXu32z5DRkYGJpOJMWPG9FlcIH42sfXGkTCASqVi3LhxeHp6kpeXN6B+2t7YuHEjCxcuJCAgALvdTk5ODiaTidjY2F7zLTU1NVItAJyUyjSbzT3mrIosX76cRYsWSVN1ztR+Vb1ez/PPP4+fnx+XXXaZQw34U4FMJmPUqFH4+flRU1PDkSNHpOlE7uS6666jvLyc9PT0AT1/4sSJ/9GFgXAyuvbCCy9w7rnnYrFYeP3111m7du0Ze432RW5uLpWVlfj5+TF+/PheH2exWHj//ffZv38/DzzwgMP1Va/Xk5aWRmtrKyNHjuwxw767ipa7EKvGXRmKASdzx+3t7W4ruhTD2nDSwDk6il3bttHe1sbLf/4zKS4Wp9XV1XHgwAH279/PoUOHpFbiw4cPD8km0a1G+sMPP6SsrIyYmBgef/zxPkv8dTodSqVSMtKenp7odDr0en2v2r3e3t4kJCRgNBrJyMjAYrHg7e3NqlWr2LZtGzt27BjU8VssFjIyMrBarSQnJ/crRSd6n30ZaTiZ5x01ahQqlYq8vLxeq9hdwW63s2/fPpYuXQqcnBKm1+sJCAjoMgu1+3MqKyuRyWSSkW5paUGhUPS6GREEgdtuu01qg/nwww8HfezuRpT8bGpqIjw8nCuuuOK0Ho9cLmfMmDFER0fT1tbGkSNHKCsrc6tXLZPJuPrqq3n//fcHFLaePn06eXl5g/IkRE6nsp5KpeLWW2/l/vvvR61W88MPP7By5cozYqCIK4he9Jw5cyQjp9frKS4u7tKDL5PJSExM7HV9bW5uJicnB7lczvjx4wkLC+vx/chkMrcbE4vFgslkklJo4Pz8aI1Gg0ajGZLaAgHHRtpgMLDp00+prqrivGXLnOr9NpvN5OXlSU6cl5cXgiCgVqvx9vampqbGrU6YiNuM9IkTJ9iyZQsymYz777+/31ygOBmq8xcTERGB3W7vM38bERFBZGQkVqtVyvtptVqeeOIJdu7cOeActeiJGo1G4uLinKpW7dwrDX3L5Wm1WqmKPSsrq8fsaVcpLi4mIiIChUJBWVkZDQ0N6HQ6Ro0a1euiWV9fT2trK8HBwdKGoqWlBavV2mf4S6FQcMcddyAIAl999dUZF/Z+9913ycnJITAwsFfv4lQjk8mIi4tj7NixyGQy8vPz+fXXXyksLHSbWExwcDDTpk1j+/btLj9XoVBw9dVX89JLL7lloMXpDjPPmTOHtWvXEhYWRn5+PitXrjyjxoj2hcVi4eeffwb+Heo2Go2UlpZSXFxMcXExv/32G3l5eZjNZmbPnu3wHm9tbSUzMxO5XE5KSkqv0bGhSE80NDRgNBq7rJvdjXRfmzmtVjsksxnEd3T0aev0en78/nvMJhNrXnyR3110kcONgslkoqysTKpgDwwMZPLkyUyaNAmbzUZVVZUkbX306FG3fwa3GGm73c4XX3yBSqXiwgsv7FKk0BuCIODt7U1bW5vkYYjzPysrK/sc1B0XF4eHhwd1dXXk5+djt9tRqVTcfffdAxY7qKiokDzRyMhIp54TFBSEn59fv560iE6nIz4+HpPJNOiCt5KSEpKTk6mtrZWER1JSUno1UDabjcLCQmQyWZdcrTjFq78pM4mJiSxbtgy73c7bb7992hdlkV9++YUtW7ZIOvDu0OR2J35+fkydOpX4+HjkcjklJSXs37+fI0eOUFBQQFVVlbRRGgjnn38+27Ztw2KxSN5MW1sbLS0tNDY2UldXR319Pc3NzbS3t3d5n6SkJObOncvf/va3QX/OM+F6iIqK4oUXXiA2NpaysjIeeuih/4hZ1SdOnJCEO8RK7fb2dpqbm4mOjmb06NFotVrq6uokY93S0iLlf81mM6WlpRw5ckRqrexrLvRQGGlxWlXn9+1e3S3S/b2tVivNzc2n5RrS19SwccMGigsLSRgxgkOHDnHo0CGysrLIzMzkyJEj/Prrr5KdSUpKkr4PQRAIDw/HYrEQHx9PYGAgWVlZbj9Gtyjs79u3j927dxMUFMTvf/97p5/n4eFBfX09RqNRmjQVHx9PXl4excXFvQ45F+c8Hzt2TBoJGRoaSmhoKOeddx5ffvklK1ascPo4rFYrxcXFKJVKkpOTnQ7ftbS00NDQIBkGZ/I84eHhNDQ0UFdXR3Nzc6+73f4QVdCys7NRKBSMGTOmz51oTU0NZrOZyMjILpWj7e3taLVap9qUrrzySn744QdycnI4dOgQqampAzp2d6HX6/nrX/8KwA033OB2yU93oVAoiIqKIiIiAr1eLwn3WK3WLtKtarUahUKBTCZz+AMnFz7RIFutViwWCyqVinfeeaffQRQymUySt9VoNHh6ejJx4kR27dpFfn6+U4McHKFWq/vcVJ9K/Pz8ePbZZ1m1ahU5OTk8+OCDrF692inH4XSRkZEBnOy7FdcehUKBUqlEEASCgoIIDAykrq5OKkCtqKhAJpOh0Wiw2WwYjUbUajXJycl9GmgYGiMtHrejCXD9rS3V1dVYrdYBjY3tjGcv67YY8u5tVW+or+erzz8nLDycK6+5htbWVux2OwaDAZlMRkBAAIGBgQQGBvaIlgYGBlJQUEBwcDB6vV76Lt3JoI20zWbj73//OwCXXnqpS3M/RWNhMpmkcKufnx9qtZra2lqio6N7DcOKIZ2DBw9SUFCAv78/KpWK+fPnc88993DZZZc53R9bWVlJR0cH8fHxLk0GEo1yb9XdjhAEgZiYGOmGc0ZVyBHt7e00Njbi6+tLSkpKn+fdbrdTXFyMzWbrEiWwWq1SK5YzaDQaLrnkEnbs2MHmzZtPq5G22Wy8/PLLGAwGpkyZwnnnnXfajsVZZDIZwcHBBAcHY7PZaGtrw2Aw0NbWJv1YLBZsNhs2mw273e6wn1nsLFAoFKhUKpYsWcKGDRuYN28ecrm8y494D1gsFjo6OjCbzRiNRtrb22lpaaGqqoopU6bwpz/9ifvuuw9fX18CAgK65Bb7Y9SoUezfv/+0Fet1x9vbm6effpqnn36atLQ0Hn74YZ588kmSkpJO96E5RCz+6zwNUKvV0tHRIYVfBUEgMDCQgIAA6uvraWxspKWlhba2Nry9vYmOjiYoKMipNUjcrLkTMYLX1NQkpTqd8aSbmprIz89HpVJJdTLuxtmKicqKCmk97nx++rIjGo0GlUqFQqHAy8sLvV5PbW0tQUFBgznkLgzaSIvebHBwMOecc45Lz9VoNAiC0KUaUwwhNDU10dLS0meuVKVSER8fT05ODiUlJSQmJkpeS3l5uVPC7Ha7nfLycpRKZZc2BWfobqSdrZj09vYmICCAuro62traBjTQvLa2FpvNRnBwMP7+/n0+VlyYxVYHEZPJJO3GnWXp0qV8+umnlJaWcvz48V6jHUPNF198QXp6OjqdjvPOOw+j0ThoBaFTiUwmw8vLq9/aDdFQi0ZbNLzdF74ff/yRkJCQfq+Fzq9rNBppaWkhMjKSrKwsfvrpJyZOnEhJSQkqlQp/f39JVrKvPP+oUaPcEjJ3FnFYz8MPP9zrYzQaDU888QQvvvgi+/fvl/59po1jFecXQFcjLa6J3c+7IAgEBAQMyuscCk86NDSU+vp6ioqK8PT0xNfXt4d4SXcvu7q6mvz8fOBkqk6sU3I3A/mkrgggKRQKLBYLycnJHDx4kMzMTObOnTuAd+3lWAb7AmJF9aJFi1yeT6tSqaTFojPiYutMK4UoctK5v3rEiBFOFzcZjUaMRiMBAQEuFxz11yfdF+KItN76wvtDDC86sxERc/TdjZg43csVI63RaKQxbV9++aXTz3MnJ06ckKrMb7jhBlpbW6WJOf9tCIKAXC5HqVSiUqmkCWvdGTt2rEuhNkEQ0Gq1BAcHk5CQIA3xSElJITIyEplMRlVVFZmZmezdu5esrCzq6+sdLu4qlUoSpDgVKJVKp3LNKpWKhx9+mJkzZ9LW1saqVauor68/BUfoPPn5+RiNRiIiIqQNlt1ul67nvkYpDpTeNK0Hg0qlIjo6GpvNxrFjxygsLJTWxe7Xq6jXnZOTgyAIjB49esBpv1PBJ598Im0mOmMymTh+/LjkaI0ePRrA7XnpQRnplpYW9u3bhyAIzJ8/3+Xn92aMxYXAmWIasQCt884nMTHRaSMtLiwDKTgSjbJYqe1K76H4fgNtFRHzVc7sPsXz2H2BFc+7qzvYpUuXIggCv/3225D0APeF0WjkpZdewmq1csEFFzBv3jz8/PykQS3/q4wdO3bAPdNwsj5kypQpHD9+nISEBKZOnUpqaipxcXHSeML09HT2799PUVFRj3t23LhxHDp0aLAfw2l8fHycEr8Qx+KKRZarV68+o/qoc3JyCA4O7pL2KikpobGxUSpMFbFYLG4RRBoq8Rl/f38mTpyIRqOhpKSE9PR0KZ3T1NREU1MTra2tVFVVUVNTQ0hICKmpqYPORQ81Z599Nm+//TZffvmlJP504sQJDh8+TG1tLX5+fowZM0aKhLg7Lz0oI/3zzz/T0dHB+PHjB7Tjk8vlqFSqHgt9fX09arXa6S+vvb29S0tTZGSk01Wd4sLeX7GFI5ztk3aEWq1Gq9UOyki3trY6tZHx9fVFrVb3MGJivstV9aHAwEBSUlLo6Ojg119/dem5g+Xjjz+mvLycmJgYrrvuOqnYUBAEqQLzf5ERI0YMWkFs6dKlfPvtt8DJhdzT05Po6GgmTZpEamoqkZGR2Gw2qSXo2LFjkpTvOeecw1dffXXKht9MmDCBtLQ0px6rUql47LHHCA0N5cSJE7z00ktnjHb5gQMHqKmpkRb4hoYGioqKpDGTokH94YcfuPfee93S4mO1WoesTdHLy4vU1FSSkpJQKpUYjUb0ej05OTnk5eVJGuJjxowhOTl5SNquHDGYTv6IiAieffZZ9Ho9DzzwALt27ZIKllNSUhg7dixyuZwRI0ag1WopLS11ONhjoAzKSHcOdQ8EQRDQ6XS0tbVJRtZut0sN4c54tyaTifb29i7FTzqdzmmvymg0StrhrtLdk3Y13K/VajGbzQNaMHx9feno6HDKyMvlcnx9famvr+9ShSsKmQwklztnzhwAqb/zVFBaWspXX32FIAjcfffd0g3u5eVFSEgIzc3N/zG9se5GlHgdDMHBweh0OofG3tPTk4SEBKZPn87o0aPx8/OjsbGRY8eOceTIESwWCzNmzJCM/FAzYcIElwyWj48PTz75JF5eXuzfv5+PPvpo6A7OScxmsxQanTBhgvQ7UWzEaDRy6NAh7r//fgoKCnj66aelVNNgGCrFMRGZTEZoaChJSUn4+PgQHBxMeHg4kZGR+Pr6ulQ74QydFcYc4cpd0ddrTZ8+nZEjR/Lee+9htVoZM2YMgYGBXSryJ06cCMDBgwddeNe+GbCRLi8vJz8/H09PT6cmtvSGmIsQw842m62Hck1flJWVAXTxul2Z8mO32yXlGFcRL/SBhLvh3w38AxGTCAwMxGw2U1ZW5tTiLJ5nMT9tNptpbW1Fp9MN6LOfddZZyOVyjh49ekrUnex2O++88w5Wq5XFixf30CaPjY1FJpOdktGgZzKDNdSLFy9m165dvf5dJpMRFBTE2LFjSU1NJTQ0lNbWVrKysoiKiuK7775zu5a+I+Lj4yksLHTp80ZERLBy5UoEQeDTTz897bKo2dnZmM1m4uLiJIfEy8sLHx8fiouLufXWW/nnP//JjTfeyPXXX++2vK3ZbHZ5rbJarTQ1Nbl8b4lqhpGRkYSHh7vswdtsNpqamoZEA99ZLBYL6enp6PV6Zs6cyV//+ld++OEHh1rdU6ZMAXDrPTBgI33s2DHgpAbwYEIWQUFBaLVayQNytrcOThqciooKPDw8epS8O5t3MRqNA74AButJw7+Lt1zFx8cHDw8PWltbnQqtdB8XV1tbi1arHXCrgLe3NxMnTsRms7Fnz54BvYYr7Nu3j6NHj+Lt7c0111zT4+9qtZqoqCjpmvhfRKVSDVrJbuzYsWRmZjr1WA8PD5KSkpg2bRoRERHYbDbOP/983nrrLT744IMhDX0LgkBkZKTL0+XGjx8vDY3ZsGHDaRU7ESMBnbW6PT090Wq1fPvtt1xyySWcd955NDc3c/DgQcrLy91irFz1pMUWzs7CHs44FuKx9idm4giz2Ux+fj779+/n6NGjUgvpqcZms3H8+HE6OjoICwsjJSWFkJAQHn/8cfbv399D7W/y5MnASfvoLmXBQRvpcePGDeoARN3W2tpaTCZTj8kpvWE2m8nIyMBmsxEfH9/DqHt5eTmlBavRaGhvbx/QgqJUKrHb7QP2pFtbW50u/uqORqPB29sbuVxOXl5ev95sZz1du91ORUUFJpNpUP18YgTF2dzgQDGZTKxbtw6Aq6++ute+7sjISFQqFcXFxYM2Vv+JuGMRUyqVBAQEuGS81Go1iYmJTJs2jdGjR3PNNddw7Ngx7rnnHkpLS4esTmDixIkDytEuX76cxYsXc+LECZ5//nm3yKIOBPG+EUPdAHl5eXzyySesXr2aZcuWMWXKFAIDAzGZTJw4cYLffvuN8vLyQX3XrhppUdFMqVQik8kkicz+UkuuyIJ2Rq/Xc/DgQcrKyhAEAaVSSWlp6aC+p4HmpIuKiqivr8fLy6vLyGKxc0AsphTx8/NjxIgRmM1myUYOlgEZabvdLlWSDtZIw8lcmN1up76+Xmo3aWlp6dVwGo1GMjMzaW9vJzY21mGBmbN56eDgYLRaLUVFRQ7/brFYMBgMDi8Q0UhbrVapVUbEarXS1tbW625KHCQSHBw8oCIOtVqNxWIhJSUFm83GiRMnem0vsdvtUiWsRqORpCMDAwMHVUAiFrtkZmYOacHWZ599hl6vJz4+nsWLF/f6OIVCQUxMDBaLZcjmd5/JdHR0uKUQJzU1dUA5NZVKRVxcHGeddRb33nsvCQkJ3H///fzwww9Dokg2efJk9uzZ4/K1JwgC//d//0d4eDgFBQXSBvBUYjAYyMvLQ6FQSEpxlZWV/OUvf+Hmm2+WCnE9PDyIj49n+vTpxMfHY7fbOXHiBAcOHBhwmslVIy0+1sfHh2nTppGUlITNZiMzM5Ps7Oxe12lHRjo4OLhXbQCLxUJOTg6ZmZnYbDZGjhzJtGnTpDB/b8dssNsxuHn98RQEwv38ePOvf+Wj9eulIr7OqFQqbrrpJj7++GMp7Qr/9qbdlZcekJEuLS2lqakJf39/lwVAHCF+CaKOdGJiIgaDgbS0tC43t+gBHjp0iObmZuLj4wctThAaGoogCFRUVFBUVERjYyMNDQ2UlpaSlZXF3r17yczMZP/+/T0MrlarlcQmOl9Adrudo0ePcvz4cX799VdJp7muro7Gxkaqq6vJycnBbDYP+Pg1Gg1GoxE/Pz/GjRtHe3s7GRkZnDhxostNY7Vayc3NRa/XExYWhre3txRhcFZprDfCw8Px8fGhqalpyELMer2eL774AoBbbrml3zRIaGgonp6eVFRUDEjD/T8Vg8EwIFEcR4wfP97pkLcjREGh2267jeuuu47XX3+djz/+mMLCQrfmFgMCAggLCxtQ65mnpycrV65EqVSydetWfvzxR7cdlzP89ttv2O12kpOT0Wg0GAwGXnjhBe6++26HnTLiOZ06dSoxMTGYzWbS09MHZKgtFotLRloU3mlsbMRmsxEaGkpqaio+Pj5UV1eTnp7u0FB3VxwTBIGamhqHzpOY962qqsLHx4fU1FTCwsKw2Ww0Njbi5eXVr0MhGmt3Ge1Zc+cil8v5edeuPkcu33PPPaxZs0Zq7Zs6dSoAe/bscUvKZ0BGWgzTjB071i1j6rRaLXK5XDIeQUFBREVFYbPZOHToEBkZGWRnZ3PgwAHy8vIQBIFRo0b1OQjD2TaDzvN/i4qKSEtL49ixYxQUFGAwGKTcr81m66KzLB636El3vujFaVOi7q7dbqe0tJSMjAzS0tLIzs7G09OTkSNHDlglSzTScLLSe8KECXh6elJeXs5vv/0m7XIPHDhAS0sLPj4+xMXFIQiCdJ77U7vqD0EQukz2Ggo2btxIR0cHs2bNckrdTCaTER8fj81mkwaP/C9QUlLi9GCY/ggJCXHLCEuVSsXSpUt5+eWX2bdvH3/72984cOCAU/3NznLppZfy4YcfDmgxjI+P56abbgLg9ddfp7y83G3H1R+//PILgCSlum7dOi6++GLi4+P7fJ5CoSA2NpYxY8Zgt9ullJ8rDETlMDg4GKvVKoW4NRoN48ePJyIigubmZoeGWlwXxbVRXI+7b9SsVisZGRk0NzcTHh7O+PHjJYGluro6rFbroEVdXDXZYeHhxCcmUpifT2lxcZ+PjY2N5dxzz+WDDz4ATup0xMbG0tTUxL59+wZ4xP9mQEZabNZ2R6gbTn5JnVuBBEEgISGBuLg4afqLKMIeHh7OlClT+v3SXOkF9PDwIDk5mcTEROLj40lISCAlJYWJEycyfvx4SbKu++Iiitt3N9Li45KTkxk9ejQTJkxg/Pjx0uvHxcUxcuTIQV14YthaxMvLi4kTJ5KQkIBSqUSv10sLbWBgIOPGjZOOUaVS9Xj+QBFVdgbjefWGXq9n27ZtCILg0uAWf39//P390ev1/3FzhQfKr7/+6jYtdYVCIcmQuoOYmBjeeustdDod7777Lr/99ptbxrXCScW9s846i3Xr1g3oeBcvXsycOXMwGo289tprp6TP3mAwcPjwYQRBYObMmVKUbvbs2U6/hp+fH1FRUVgsFpeV3mpqapwaxduZ4OBgNBpNl0iWuE6Hh4fT3NxMRkZGFwNss9m6fMfietx5U2G1WqWIQHh4OImJiV0cP1G2eCBrpehR9zZTui/i/tU98s4HHzjllS9cuJDq6mqOHTuGIAgsWbIEwC0RmgFpd4t9lO7QbRbnOJtMph4tBuLkEXHqj1qtdtpzd7VhX6lU9umJiApfnekt3C2TyVCpVNIFLZPJ8PX1HZBgSm+IBW+dkclkREZGEhkZSUdHBzabzWFRmq+vLydOnKCwsBA/P79B9UyKnvTx48cH/Bq9sXHjRiwWC2effTbR0dEuPTc+Pp6Ghgby8/OZOHGiWyI+Zyp2u50jR45w5ZVXuu01g4KCqK2tdZsspVKp5L777uOnn37inXfe4ZxzzqG5uZlRo0YNerzohRdeyN/+9jceeOAB5syZQ3t7O+Xl5ZI+wIQJExg9erTD7gtBELjllltIS0sjKyuLbdu2SQvsUPHrr79isVgYN24cMpmMDz/8kGeeecblazQwMJDi4mLq6+td0mxvbW11OYqmVquZOnVqj2MUBIHExETsdjuVlZVkZmZKEVbRYIvrcHdP2m63k5WVRVNTE2FhYT0MtPgZAwICBnX/ygAbrnmkUf9KKTibEhQEgdtvv53Vq1fzwgsvMGfOHLZs2cKhQ4eoqakZ1H3ksidtMpmora1FLpcTFhY24DcWKS4uluY49/Z6CoVCGsbhLDabzS2qOmJRVmtra4/QtFardehJe3l5SUIF7irD744o6t4bSqWy16pxsRjFaDSSlZU1qErRmJgYBEGgsrLSrS03nb1oV8aOinh6ehIaGkpLS4tb1X/ORPLz84mIiHCrelNERESXYhh3MWfOHNauXcuBAwfYunUrR44coaSkZFAerFgIJuaY4+Pjufjiizn//PNJTk5m79693HPPPbz33nsOJUG9vLy4+eabAfjb3/425PreR44cQRAEZs2axRtvvME111wzoB5oMWTtisxpWVnZgNMiva2/giAwYsQIgoODaWhokK6b7kZadFrE35eXl1NfX09QUFCXymln39dZ8svKnPakDXY7TR0dXPeHP3D9jTe6NGgjMDCQ888/nw8++AAvLy/i4uKwWq2D9qZdNtLl5eXY7XbCwsIG1BfcmYqKCoqLi/H09HRpjrMzWK1Wp09wU1MT3377LU8++SQPPvggr7zyiiQ1euzYMerr69HpdD0ENDQajUNPOiQkhIiICKxWK4cPH5YGonfHYrHwww8/sGXLFn799VeXWgwGe64iIiIIDQ2lsbGR7OzsARtqpVJJSEhIF6U4d/DZZ59hsViYNWuWy160SGxsLHK53O0FS2can332GRdeeKFTj7VYLJhMJsxmc5/nJDIycshytMHBwbz66qtERkby97//naNHj5KZmTno7ygwMJAlS5aQmppKbGws8fHxTJ06lVtuuYXXXnuNqKgoHnzwQYdStmeddRZTpkzBYDDwzjvvDOo4+qKpqYndu3fj4eGBxWLB09NTEsBwFVEp0ZXNcW5uLiNGjBjQ+/WFaKg1Gg1FRUUYDIY+Pem2tjaKiopQq9WMHDlySCNd4eHh2HEt5G23210y0CILFy6kpqaGY8eOMW/ePAB++OGHQW1CXbay4i7JmelLfVFRUUFeXh5qtZoxY8YM2uB3p79wt8FgYMeOHWzduhWTycSkSZNYtGgRsbGxlJeXYzAYpIstLCyMhISEHq/XmycthoAqKirIz88nLS2NsWPHSm1htbW1Uh9dTk4OYWFhFBcX89FHHxEXF8fcuXOHPEQr3lRms5na2loEQSApKWlAF2ZERARVVVWUl5e7pXhJr9ezfft2l3PR3REn8xQWFlJaWkpsbOygj+1Mo7CwEJPJ1CX1ZLFYpFGvRqMRs9mMyWTCZDJ1MYSiZrs41L6z8l5ISMiQKofJ5XL+8Ic/MHnyZF566SVmz56NzWYbMj1nQRA455xzmDZtGm+99RY5OTlcc801XSqPb731VtLT09mzZw/79+9n2rRpbj+OPXv2YLPZGDFiBNu3b+f5558f1OtZrVaXDEBubi5nn332oN6zNxQKBSNHjiQ7O5u8vDxp8+DISOfl5SGXy0lKSnL72t8dQRB4/qWXuPDCC6UNSm/Sn+Lvt+3ePaC+bEEQ+OMf/8izzz7LCy+8gI+PD2VlZZw4cWLAm6MBG+nBLMaVlZWSge5cyedO+gp37969m3fffRdPT0/OOeccAgMDsdvtWCwW8vPz0Wg05ObmolQqiY6OJjY21qHB7C0nLRIeHo5WqyUvL4/09HSp0EzMJYeFhUlKTVqtlnPOOQer1cqOHTvYsGEDl19+OZMnT+7VWA+2yEUmkzF69GiysrKkkPBAIhrh4eEcOnTIbZ6X6EXPnj170JtBcQNRWlpKUFCQy8NEznQ+/PBDLr30UhoaGmhsbKSlpYXGxsYu14YomOPp6YlarZYKw6xWK42NjZSUlFBSUiINtRGLik5FEdXEiRN54403ePLJJyksLGTZsmVMmjRpyGYL+/j48OCDD7Ju3TreeecdbrrpJul6DwoK4uqrr2bdunW89dZbjBs3zu0zysXQp4eHB2PHjkWtVmMymVCpVC7fd1arFYvF4vSmRswB/+EPf3D1sJ3Gz88PPz8/qqurpS6S7kbaaDTS2NhIcHBwlylfQ8msWbP45ZdfnDaUGo2G1tZW2tvbXb4GAgMDGTt2LL/88guzZ8/m66+/5tdffz11RlpsQxqoka6srCQ3N1cy0O6+CUQcedLFxcWsW7eOpqYmli1bxpw5cwgICJBUuEwmE9XV1VRUVGCz2QgMDCQuLq7X9+itBaszfn5+JCQkkJOTQ3t7O6GhoSQnJ+Pp6YlMJkMQBNra2sjKyqK8vJwpU6Zw++23U1NTwz//+U8+++wzrrjiii7Sge5ELpczevRoMjMzqampkTxqVxaMiIgIALcY6YaGBnbs2DHgXHR35HI5I0eOJC0tjZycnCGLUIgFOYPtPYd/69cbjUY6OjqwWq1dfsxmM2azmf3791NVVUVdXZ3UUSCTyfD398fHxwcfHx80Go3DosfO79XU1IRer6euro6KigopDVVZWUltbS3+/v5DNjUJThrOl19+mQ8++IBXX32Vq666igULFgzZ2iAIAjfeeCPvvPMOP/74oxSWBDj//PP58ccfycvL4x//+IfUouUOampqOH78OAqFgpKSEu644w7y8vKoqalBrVYTGxtLSEiI09en2G/sbDtVWVkZ4eHhQzpcA07ahurqauma7G6kReM92A24K0ycOJEPP/yQP15/vVPqY9HR0ZSWlnL8+HGpu8cRZrOZuro6mpubMZlMUiTo0ksv5bHHHmPFihV8/fXXpKWlcfXVVw/o2E9ZuNtut1NeXk5BQcGQG2joaqSNRiOffPIJWVlZXHbZZRgMBiIjIyWlsubmZsxmM1qtltjYWKKjoxEEod+bpbcWrO4EBAQwc+ZMbDYbNpuNuro6jEajNEHFw8ODuLg4MjIyqKysJCEhgeDgYO644w4qKytZv34927dv5w9/+IO087RYLG5bOOVyOSkpKWRmZlJdXY3NZiMpKcnp13enkf7666/p6OhgxowZbruJfX19CQ8Pp6KigrKysiFZHI4dO8ZTTz3Fueeey/Lly532EMTBBXV1dbS2tkqGuT8v1mAw8P3333PXXXfh7++PRqPB19cXnU7nUspCJpNJ3k9iYiKtra3o9XoqKipoaWkhKytLekxQUBABAQFDEp4UBIHrr7+eUaNGsWbNGoqKirjxxhuHzKMWBIGrr76alStXMmnSJKnCXCaTcccdd3D33XfzzTffMGfOHJKSktzynqLGvU6nY+HChbS3t1NdXY2npycdHR3k5+dTUVFBYmJil0Iyk8nEsWPHaGxsJDw8nBEjRqBSqSTpVmfbqX777bcB579dwcvLC51OJ0V0One52O122tvb0el0g9ZpcAVRDc+OcxKhQUFBNDc3U15ezsGDB6UhKOKUstbWVurr62lvb6e9vR2bzYZMJqO6upqoqCi8vb2ZMWMGVVVVknTzQPrTwUUjLZbZAy4pjYk5iOrqajQaDWPHjh1SAy2+pyAIHDhwgH/84x8sWbKEa665hszMTNra2qTjt1qtZGZmSlJ5QUFBxMbGOrXb9PDwkMLdzixcMplMuhHVajUVFRXSLFJ/f3+0Wi1VVVVSwROcDImvXLmSAwcO8Kc//YmlS5eyZMkS6uvr3TosXTTUWVlZ1NbW0t7eTkpKilOpiJCQEODk0I7B0NbWJo06vOSSSwb1Wt2Ji4ujrq6OoqIiAgMD3X79ZWRkYDab2bx5M99++y1Lly7lkksu6dVYWywWSblP7OWWy+WSJrtGo0GtVqNSqZDL5V1+FAoFzz//PA899BCTJk1y22cQBAFvb2+8vb1paWmhqamJ+Ph4ycuuq6uT2gnF9kh3e2UzZszgxRdf5OWXX2blypWsXr16yBZzDw8PrrzyStatW8f9998v/T4uLo6LL76Yzz//nA8++IDnnnvOLdGXQ4cOYbVaaWlp4bzzzqOurg4vLy8SExPx8PCQohdHjhzBx8eH0NBQgoKCMJvNZGdn4+vry88//8y7776LxWJh4sSJpKamOn1+Dh48yEMPPTToz+EMfn5+2Gy2Ls6EXC7HYrFgs9lOWZi7M7NmzeIv69Y5He6Pj4+npqaGrVu3kpOTg0wmIzg4mOXLlwMn7xdxwpdSqSQnJ6dLX/iyZct48MEHiY+PJy8vj4yMDEmNzBVcMtJi8YlKpXJ6R9De3i7pSvv5+TFq1KghD7eIIejXX3+d5uZmVq1ahZ+fH1arlYaGBnx8fKRF2mAwIJPJpLB3RUUFDQ0NBAQEEB0d3eexOutJw8lzV1paSnl5OQEBASiVSqqrq8nPz5eqG0NDQyksLKSxsbGHAZ4yZQpjx47lk08+4ZFHHmHy5MluU5gSkcvljBkzRiq0ysjIIC4urt/NgHjDiTvngS5o27Ztw2AwMGbMGLd5LyJiUUt6ejo5OTmMHz/erWHvK6+8khkzZrBhwwZ+/fVXvvzyS7777jsWLlzIeeed16VCvaGhgaysLCwWC1qtlpiYGAICApwemfrxxx8THR3tVgPtCJVKRVRUFFFRUZhMJvR6PbW1tTQ0NFBfX09eXh4+Pj6Sh+0urzc+Pp57772Xr776iltvvZU//elPPTor3MW0adPYuXMnR48e7TLo4rLLLmP79u1kZmZy9OhRaU7wQBHnDej1eu6++25JTMhgMGC321GpVIwYMUIqIq2rq6OpqYkTJ04QGBjIvHnzpHnFer2eyspKvvjiC1paWiQj3xfiuEd3ajX0hbe3t5SeEY20QqGQfncqvWiRSZMm8Y9//EOS0G1oaMBgMAAnr3U/Pz9UKpWkO/DJJ58QGhrKwoULufrqq6Vj9/T0xNPTEx8fH6keQBTb6lzzotVqWbBggVSHkJaWNvRGuqGhATgZPnRmMampqSE3Nxer1UpMTAzR0dF9huKsVisGgwGDwSANrOj+o1ar+w3nZWdnk5ubywUXXMA555wjHWtbWxt2u71LKEkQBEwmEyEhIcTGxlJdXU11dTVlZWXU1dUxatSoXvOM4hckhjr6+lzHjx+nubmZwMBAEhMTUavVtLW1STep6MXAyY2DI8Oo0Wi47rrr2L59O0888QTPPfdcj8fY7XbMZnOPXKa4mRA9td42FYIgEB8fj5eXF/n5+WRkZBAZGUlcXFyvn1H0+MxmM0ajcUBeqsViYfPmzQDSTtXd+Pv7ExoaSlVVFSUlJYPWfe9OfHw8jz76KAUFBZKx/vbbb/n2228ZM2YMS5cuJTExkfz8fKm6PjQ01OWKelFlayjpvtlSq9VEREQQERGB2WxGr9ej1+tpbGyksbGREydOoNPpiIiIkNI4gyEuLo6FCxcSFRXFCy+8wAUXXMAFF1wwJPUEN910E08//TQvvviidE97eHiwfPly1q9fz4cffsiECRMG9d4ZGRl0dHRgsVhYtmwZcLIVrbS0lJKSEmlN9fLyIiUlBbPZTE1NDVVVVdKa5OHhQVtbG4IgEB0dzV//+lf27t3LypUrufbaa6XBDo7Ytm0b8+fPH/Dxu4qXl5dUjCsaaaVSKQlTnQ4jrVAoWLp0Kd988w1TpkyhrKwMu92OUqmko6MDtVotdf2EhoZy7733Ehoa6tJ7dE9TLVmyhE8//RS73T7gaYEuGWlRfq6/3ZioVV1YWIhSqWTUqFG9emNGo1HyXkWD1RnxwhSRyWR4enri5eWFr68vQUFBXW4esa3qvffe65F7bG9vR6lUdgnharVaBEGgpaVF8mZDQkKkApq0tDRSUlIchmc6j5nsTeKwoaGBwsJCDAYD0dHRkvhHS0uLVOIvLoharRalUtmvAMo555zDjBkzePXVV8nPz2f58uU0NDTQ2tpKa2trl75J0Xh2R6vVotPpCA8PdyikIE6rOX78OGVlZbS3tzNq1CiHeWpBEBg5ciQtLS00NDQMyEj/9NNPCIIghfCGisTERJqbmykuLsbHx2dIPAvRWBcVFfHtt9/yww8/kJGRIU3FmT59ujSFaSAMVQtNZ/qKiKhUKsLDwwkPD6ejo4O6ujr0ej1fffUVoaGhjBkzhsjISEJCQgZcNyHq85tMJlasWEFaWhpPP/00d91114CEP/pC9FQ/++yzLqpt559/Pps3byY3N5cDBw4MyAsSOXz4MAaDQSoahZOGLDg4mJqamh7tiyqVisjISCIiIqRpeuLaqNPppE32vHnzmDBhAm+99Ra7d+/mhhtuQKvV0tbWhkajQaVSYbFY2L17N2vWrBnw8buKWq2WnAPxWAVBQKFQdPksp5qFCxdy++234+fnR2hoKFFRUQiCQF5eHu+99x5wchyuq5tgX19f5HI5NTU1XQy7RqPhrLPO4rPPPiM3N5eGhgaXQ/0ubeGbm5sloY7esNvt5OfnU1hYiIeHB5MmTephoO12O01NTWRlZfHbb79RWlqK0WjE19eX6OhoRo8ezejRo0lKSiIiIoK4uDiio6Mlg9Le3k5lZSXHjx8nOztb+tI//PBDDh8+zHPPPeewOEj0MDuH5RQKBX5+flL/Mpy8mCIiIqQQ2/Hjx3tV9RFfq7eeuoaGBurq6roY6Pb2dkm8YeTIkZInpVKp6OjocEpByNvbm4cffhir1co999xDfn4+zc3NaLVa6eITz9vIkSMZNWoUKSkpxMXFERgYiM1mo7q6miNHjnDkyBFqamp6CJp4eHgwYcIEgoKCqKur49ixY71uRsxmM8XFxU6NB+2O3W5n8+bN1NXVMWfOnCHtD5fL5YwaNUq6MYdKEQ5OiqncdtttrF+/niuuuAJvb2/a29s5dOgQd999N0899RQHDx485cPsO1d0t7a2OhQRcTZtoVQqJcPs6+tLWFgYZrOZvLw8fvvtN0pKSgasRCemXzQaDTNmzGDRokU8/vjjQyKycv7553PkyJEur63RaLjsssvQarVs27ZtUIbl8OHD1NTUcOmll3b5fUJCAlqtlvz8fIdDTQRBwNPTE39/fwICAqRUWWf8/Px46KGHiI+P5+6772bNmjUcPHhQGkz0888/M3Xq1CHpP+8NUbdbnActIh6DKypp7kSlUjF+/Hj2799PTEwMHR0d/OMf/2D79u388Y9/5KabbkKpVLpcXyNGEx2tJ6NHjyY/P5/W1tYBzZh2yZNubm6murpamiPsiPb2dqqqqlCr1dJQBzHM097eTlNTE/X19VgsFoxGIz4+PkRERBAQEOB02M9ut2M0GikpKaG6uprm5mb27duHp6cnDz74YJ8egHiMnUlISODw4cNkZWXh7e2NQqHoMXqyqanJYRFVf0baaDSiVColCbzOlbvx8fFdNHfF43I2Z19YWEhycjJyuZytW7eyatUql1qAWlpaKCsro7a2luLiYvLz8wkKCpIqL+VyOR0dHSQkJGCz2dDr9dTX10uFYp0Rq2MHMtDi6NGjFBUV4e/v79KQgYEiFuucOHGCnJwct01z6w0xPHnvvffi6enJzp072bNnDwcOHODAgQMEBwezdOlS5s2b59ZiQEfU1taSk5MjGWYxBKnT6aRiMI1GQ3Nzs8sea3NzMxMmTCAwMJDKykrKysqk+obw8HCio6Nd9qzVajXR0dEUFBQQExPDPffcw4svvsjNN98sDXdxB3K5nJtvvpl33nmHVatWSb9fsmQJmzZt4rfffuPgwYMDqo6ura3l0KFDNDQ0cMEFF3T5m0qlYuzYsWRlZZGXl4dSqXRah1vEbDaTkZGBj48Pv//97zl48CAbN27ksssuo6mpiS+++IKnnnrK5eMeDGIPd3cjLa6XbW1tp6V4DE5Ob3zttddYu3Ytra2tXH755aSmpkoO1IEDB6iuriYoKMil1xUEoctGrqOjQ+oqSklJkULec+bMcel1XTLSorxlX4ZAzIVaLBZJfs9RyDooKIjRo0fT0dHBxo0bufDCC52O/4uhYbFNaO3atUycOJEbbrjB4WIrnjg/Pz9pdnRISIhUke3h4cHEiRMpLS3FbDZ3EYMQBEESeXdEf0Z6xIgR+Pj4UFVVhcFgkAoUdDpdl88rpgiALr3bvW1cxCEC3t7eXH/99Rw4cIBVq1bx9NNPOy0O4+3tzahRo4iPj6eqqoqKigrKy8slb0KtVvP1118TExMjFXL15nmKC/pAPGlxXvQFF1ww5EWFIqIkak1NDcXFxUOmRiaOzLRYLKSkpBAYGMjEiRO58cYbpdRMdXU169ev5+9//zvjx49n/vz5zJgxo8v3KBZDyuXyQW8oOjo68Pf3JygoCKPRSGtrq1Rlnp+fj7e3N/n5+S6fE71eL1V8R0dHExERQXV1tZR3rampYeTIkS4vzhEREVL73JQpU/jTn/7Es88+y7Jly9wa+h8xYgQeHh7k5ORI17tKpWLZsmW89957fPrppwMy0ocPH5ZmMotz3TsjrmVHjx4lKyuLyZMnO50yMpvNpKWl0dbWRlhYGLGxsSxcuJC0tDTefvttbDYbsbGxLhv++vp65HI5Op1uQNebM0b6dHDixAk+/fRT1Go18+fP5+yzz+7y+bRaLV5eXgNSXtRoNNLm98SJE7z55pvMmjWLZ555ho8++oi1a9eSlpbmcnGt2420j48P48aNk3rIxLytWDnn4+MjeWn5+fm88sorrFixwqF35gzZ2dnI5fIeJ1uksbGRoqIiKacaFRVFSUkJGRkZJCUlSTeDqB8O/14QgX4XRXEh7c1IK5VKqeCmN6xWKwUFBVRXV0vn58iRI6hUKnQ6nUPtavG7CAsLQyaTMW3aNFpaWvjggw+49dZbe30vR6jVaqmwz2Aw0NzcTHt7O3a7nYCAADw8PAgPD8fb27vX72mgnnR5eTlHjx5FrVYP+fShzoh5dIPBQHFxMTqdzuWFzBnKysrQ6/VERkZ26Wf18fHh0ksv5ZJLLuHw4cPs2LGD/fv3c/ToUY4ePYpGo2H69OmMGzeOkJAQWlpapEVPLKL08vLC398fPz8/pxd1UdykubmZiIgIKS9usVior6+ntraW+vp6jh8/jlKppLCwkPDwcKcqt8U2RhG5XE54eDihoaGUl5dTVFTEsWPHCA0NJT4+3ukNmTgjPCsri6KiIpKSkli9ejUvvvgi1dXVXHLJJW6LhCxfvpyNGzfy8MMPS79bsmQJn3zyCdnZ2RQUFPQ787k7hw8fpr6+nttuu43XXnuNZ555pocR8PLyIjk5mczMTIqLi6W1qD/Ky8tpa2sjNja2SyHk+PHjefLJJ7n55puZPHmyU1MB7XY7u3fv5qeffpLSWuL97O/vT2pqKmeddZZTdRydjXTnMPvpMtLHjx9n48aNNDU1MX36dObNm+dwTbZYLLS2tg7IWRDFsHbs2EFrayt33323lHb93e9+x+rVq6murqaqqsql4VQuh7uBfsNgojhCX2RmZrJu3ToeffRRlyvoROrq6vj+++9Zvnx5r0MsROUbuVxOeno6KSkpREVFUV1dzaFDh5gyZUqPBUgscHCG/jzp/hBDIC0tLQQGBhIbG0t6ejrt7e1YLBYMBoNU3NAZRxumBQsW8NNPPw140o1YXdq58jIhIQGdTtevpJ1opF2dbfv9998DJ4uhTnXFp6i2dvjwYbKzs5k0aZJbJWqtVitlZWWSmpQjBEFg8uTJTJ48mdbWVn755Rd27drF0aNH2bRpE59//jk+Pj5Mnz6dWbNmERwcLFXI1tfXS6pOHh4eBAcHExYW1mfu0dvbm/Hjx3Ps2DGysrJISkqSokrBwcEEBwdL4dOAgABKSkooLS0lLCyM6OjoPpWXelvYZDIZUVFRBAQEkJubS1NTE4cPH2bUqFFOh9S7R7O0Wi2PPfYYb731Fm+++Sa33nqrWwz1iBEjaG1tpaKiQtrAaDQa5s+fz9dff8327du55ZZbnH49q9XKb7/9BsAVV1zB999/L4WiuxMQEIBOp6Ompobo6Oh+26pE3QpPT0+HG/ng4GCeeuopnn76aalavjeys7N59913SU5OlgqrOr9PbW0t+/fv5/nnn0en03HWWWcxc+bMXr9zsaukuyct3l/dU45DQW1tLfv27WP37t0EBwdzxRVXACc3zr1dd+Xl5SiVSpejPQ0NDWzevJn8/HweeOCBHu2RGo2GUaNG0djYSFpa2tAZaWc8aWewWq288847PP744y4PH+/+OldeeSUymaxXI1lfX4+3t7fUI1tSUiLNcc3NzaWlpWVQ/Z39VXf3h9FopK2tDU9PT0aPHk1hYSHt7e3Ex8dLBXLi3zsjvl/nYxcEgcWLF1NfX++2Hmq1Wu3UBkQ00q6Eu61WKzt37gROVqyfDjw8PEhKSiIrK4usrCwmTJgwoFCXI2pra+no6CAuLs6pXKyXlxeLFy9m1KhRUkFfbm4uzc3NHDx4kIMHDzJixAgWLlzInDlzUCqVNDQ0SH3LRUVF1NbWotPpiImJ6fW67myos7OzJU9MNHIqlYpbb71VUscrKSmhoqKCqqoqIiIiiIqK6rE46/X6fnN4Hh4ejB8/XspVHz16lISEhD6jTCKCIPSohZHL5VJh3ocffjhg2cXuXHTRRWzevJnbbrtN+t0555zD119/zY8//sj111/vdBFWXl4e5eXlxMfHExISwuWXX86f/vQnYmJiegzwEARBKmI1m839GmlRFbGv8GlkZCQ33ngjmzZtor29nfPPP7/LY1taWli/fj21tbXcd999Do2HIAgEBwdLbXCit3jvvfcybtw4Zs+e3WOSlcVicVg4JhppR4VjNpuNyspKCgsLKSoqory8nObmZqnrx2634+/vT0hICFFRUURERCCTyTAajRiNRtrb2zEajdTU1JCVlUVAQACTJk3isccew8fHB7vdzoEDB1AoFA41/MXao9bWVjo6OqiqqkKlUqFSqdBoNA4dN7PZzJdffsn+/fuZMmUK559/Pt7e3g6/kwULFvDuu++SlZXlUtTwtBjpnTt3kpqaOigDDUg7/wMHDjhcBG02G2azmYCAAHx9fQkNDaWiokL64v38/AYtwCDerAOtYFWr1Xh5eWE0GrFYLFRUVODp6dllVKDJZOpxUYmft3tl8KxZswZ0HL2hUCicqsQUQ2BiL70zHDx4kIaGBiIiIpwO7w0FQUFBREREUF5eTn5+vttG+VVVVSGTyVyKFImFVnFxcSxduhSVSsXx48fZtWsXu3fvJi8vT2oXOfvss1m8eDHJycmSt1NZWUllZSXV1dVEREQQExPj8N7w8vJi0qRJZGRkUFJSgtlsJjExsctjxdqRwMBAamtrKSoqorS0lMrKSuLi4ggLC5MWopqaGqcKbQRBICoqCh8fH44fP86JEycAnDLUvb3etddeyzPPPMOePXvc0j+emprKxx9/TFNTk7T5jI2NZeTIkeTm5rJnz54uet99cfjwYRobG6WqboVCwSOPPMLjjz+Oj49Pl+teNBJi/toZPD09aWxsxGw2O9w46HQ61Go1//d//8f+/ft58sknGTduHAqFgszMTCorK/nd737Xa7rQESEhIVx11VWsWLGCo0ePsmXLFl5//XUmTpxIQkICUVFRUtGpo5x0Q0MDX3zxBUVFRTQ0NEhdBoIgSHn1kSNHMn/+fHx8fPDw8JA2I83NzVRUVFBaWsrRo0ex2+1otVo0Gg1arRZfX1/i4+O57rrrepyPuro6qc3W0UZc/PxKpZKSkhLg3y2sMpmMwMBAQkJCpNqm6upqXnjhBebMmSOp0mVkZFBRUUFrayuxsbFdNEXmz5/P2rVrKSwsdOo8iwxJuLs/fvjhB1auXDmo1+iMTCZzeNJFwyleJIGBgVRUVFBbW0tdXR0+Pj6D3nCIrz1QIy0ORCgsLKS4uBir1Yq/v3+XXI4jL10ul6NSqYZ8TrLJZHJqIyMaaVdy0jt27ABg8eLFQ1pd7Qzx8fG0tLRQUVGBj48PwcHBg35NUavXWa+rvr6e0tJSSdBC3LmLLYk33XQT+/btY/v27Rw7doydO3eyc+dOoqKiOOecc5g/fz7jx4+nrq5OMvY1NTUkJiYSEBDQ4xxrNBomTJhAfn4+VVVVtLW1kZKS0uN4RU8qMDCQqqoqioqKyMvLo7Gxkbi4OLRaLbW1tS6dM51Ox4QJE0hLS+PEiRMIgjDgvnFBELj33nt5+OGHSUlJGXTvuyAILFmyhB07dnRpmVq0aBG5ubns3r3baSN95MgRAgMDmTt3rvQ7T09PHnnkEVavXs0NN9zAuHHjgJPje0W1QWfTbcHBwVLXjaO2U7lcLsm83nLLLTQ2NnLs2DEsFgvXXnst4eHhA773FAoFqamppKamSgVsxcXFHDx4kMLCQtLS0oiLi+vhSXt5eZGQkMD48ePx8/MjMDAQT0/Pfo9DlOH08fHpMprVWUS9h76ijOPGjZPSjOIgG7GYuKamhpqaGklp7K233uKOO+7osqlPSUkhPz9fmint4eEhbZTE2iSxLdHZ7/iUe9Kiqpi4Q3UHJpPJYS5RDNOKF4mXlxceHh6UlZVJebLB0pchdZbw8HBpXKAoN9f5uB29tiAImM3mIe+xNZlMTn3frhaO1dfXSxGQU6mE1Bvi2M5Dhw6Rm5srSf8NFFFtyZV7paioCJlMxqhRoxzewCqVijlz5jBnzhwqKyvZvn07O3fupLS0lPfee4/169czffp0Fi9ezKRJk6RpVpmZmQQEBDBixIgeGy5RLlUul1NeXk5GRgbjx4936H3LZDLCw8MJCgqisLCQ6upqGhoaSEpKkjYDriC2aaalpZGXl+dy1KEzHh4eXHHFFbS3t7tFoGbmzJmsWrWqi5EWK7szMjKcKsSyWq3k5+cTEBBASkpKl78FBgby5JNP8s4775CZmcmkSZOorq5GrVY7LYkrylCKOvBi+Lc7/v7+NDU10dDQIAm3uBuVSsWUKVOkc1RSUkJRUREdHR1dNn0eHh4olUoCAgIGLbXqKgaDAW9v736dDoVC4dA+GQwGSktL2b17Nz/++CNPPfUUCQkJXR4jk8mkupCysjJqamqkSnkvLy/pXqmsrHTa/pxyI11ZWTng0FZv9CbLKRo38SJRKpXSSMrIyEi39OmJeaPBNOcrFAri4uLIzMykublZOr+ike6eE/YUBKbMmMH0s87i/1asoLqqqsvfDW5U8zEajU4VU3U20s60GPzyyy/YbDZmzJjh1g3bYFCr1YwaNYr09HSysrKYOHHigCc+Wa3WPlvoutPe3o7ZbCY0NNQpXfywsDCuvfZarrzySg4dOsS2bds4ePAgv/zyC7/88gshISFceOGFzJ49m/LycvR6PS0tLYwePbrH+RYEQTKw5eXlZGdnM3r06F6/Q6VSyciRI/H39ycnJ4esrCwKCgqYOXOmU5+1MxqNpouh1ul0A5oUBPTI8Q4Gb29vvLy8qKqqkjYOAQEBUlokLy+v3xRNeXk5HR0dhISE4Onpid1ulyIQarUauVzOnDlz+O677/j888+ZNm0aZ599tqSt0BmTyURLS4v0I+ZN4WQULygoqFexlYCAAMrKymhsbBx0itFZTCYTFosFmUzW5bOIG19RM/tUIRZbDqYw1NPTk6CgIH799Veuuuoq6ZxqNBpJC6StrQ2lUimt2eK4WDgZ9YiJiSEvL4+ioiL3G2nxILoLfbiKOBLSnbjSd5acnIxSqUShULglxCrmjgbbUhAeHo6fn580wKQ/bP8Kc8uGcM4vOG+klUolnp6eGAwGp+Yqi8o77lxY3YGfnx8xMTEUFBRw4sSJHgvxl19+SUtLC5dffnmf94FYnNLY2NivtjuczF+bTCaXvUCFQsG0adOYNm0aer2e77//nh07dlBdXc26dev45JNPuOCCC5gyZQqVlZWkpaX1WqyVkJCA0WhEr9dTUFDQw0voTmBgIBOSkrhkxQr2HzjAP9evpzA/v8/nONpAin3Cx44dIzc31+3DTwbKWWedxd69e7toyY8fP57y8nLS0tL6NdIFBQUA0kx6sV5AlMa02Wyo1WqWL1/ONddcI2nlb9q0CblczvTp05k+fTpVVVVYLBbJSZLJZHh4eEgGQK1WExwc3Ktn7+HhgUKhoLq6moSEhFNybkUjrVaru9wn4gbsVBtpUd9hsKprb7/9Nn/84x+lqXo1NTXAyU22ONJV3OB5e3ujUqm6nG+5XI7RaHRJ0cxpIy0aIVHrejC4W7dVHIHWHUeeqLt1f8Wd4WBbCsS50p29iO6RAM/OAw/+ZTgdiYt4Ovh+BupdO5uThpPtK+LQhb6MtN1uJysrC6BP9brTRWhoKLm5uQ6v8wsuuICvvvqKhx56iGuuuaZPgyK2MDU2NvbZg93W1kZZWRlarXZQvdqBgYGsWLGCyy+/nN9++43PPvuMnJwcPv74Yz7//HMWLFhATExMr8Vaol52WloaZWVleHh49Nsq0lBfzxf//CcB4eGcu2wZ3375Zb+G2hF+fn6EhIRILZOnyuPri+nTp7N69eouRnrcuHF8++23ZGRkcPnll/f5fL1eLw3ugZPXvYeHhyRwZLPZuhjWzpui+vp69u3bx5133smSJUuYPHkyiYmJkgFwpQNBzOVWVVVhNpuHbEZ3Z8RNSPfCMa1Wi0wmO+V90uIaOhgZ4L1796LVaqX2KnEGu7MYjUb279+Pn58fFRUVTj/P6W9aPKkDDUWJdJdOcwe9DZEQv5iB9jA7g2j0h0KLVjxuR7s/cXPQNsQ7UleMtNlspqysrN+8dHFxsdQX7o4CLXdis9nIzs6WhGS6I5PJuOiii3jggQf48ccfWblyJQcPHnR4TYvDX06cONHrNWi328nNzcVmszFixIgBD6TojCAITJs2jT//+c8899xzTJ48GZPJRHp6Om+++SaffvopP/74I/X19T2eK+plq1Qq8vPzndp81tXVUVRQQEdHB4vPP7/PXL6nIDjcRMLJaJLYX3smIG40OxsU0eA6ox8u6nF33gy1tbVJHRB9fdf+/v4sXLiQK6+8ku3bt0vRD51ON6AWQXfUzriCaKSBHtXdp8NIi5GtwazTX3zxBddff/2An79+/XoWLVqESqVCr9c7/TyXjfRgimlg6Ix0R0cHjY2NklIW/DsEO5QXpliVaDabB1zh3RtiQVxnI63VaomMjsbT2xubzYZxiEUBjEaj00ZaDNX2J2iSnp4OnPSiz4SwZmeKiopobGwkJCSkzyKmsLAw7r77bu655x727dvHgw8+yK+//trl2vby8pL6jzMyMrosTGI7SVZWFk1NTVJrhzsRe4uffPJJXn31ValArLCwkDfeeIM777yTvXv39ig+VKlUjBw5EqvVSl5eXr/3qw1oNxj4YccO7HY7yd2KpPpDfP3Kykq3yJ66k5EjR5KXlyf9f0hICIIgoNfr+11XamtrsdlsUmtaSEiINLxh3759ZGdnU1ZWRkNDg8PXstvthIaGMnfuXL777rtBfQ6ZTCbNSh5qxNZX8b0613WIRtpoNJ7SzZhodwbqSRcUFBAYGDjg+pmsrCzKy8s599xzAVwy0i6HuwfrSfv5+TncwQ8GLy8vamtrOXbsmBRSEot+7Hb7kOY/xAIQm83m9qp1sTlfq9Vit9tZsGQJo8eMwW63o1AqqXIhZCJ6L66GvXurnHeEsxXeZ2qoW6/XU1paiqenJyNGjHDKWISGhnLHHXdQW1vLxo0b+fTTT5kzZw5z587Fx8eHqKgoTCYTFRUVHDx4EB8fHxQKBS0tLZhMJqka1FWpSVcRJyRdddVVfPPNN3zxxRcUFxezatUqYmJiWLZsGQsWLJC+64CAACIjI6VBGd2LXDp7w3ZAAPKys5kzfz6jx43j0L9UtnrDUxAw/Ksv+I033uCuu+6iuroanU7n8mCDoSQ5OZns7GzGjx8PnDQ4QUFBUjtOX0WwYm+5uCArFAomT55MdXW11MveefKVSqWSugrEeQcGg4FZs2bx5ptvcvHFFw9YaEecM38q6F401n0uuSg+NRT1Sb1hs9kwGo0DTnd+//33LFq0aEDPNZvNvPPOOzz88MPS5x1SI+3opIpCCnV1dVitVjQajdQP5+Pj0+VL0ul0AxrC0BfBwcGSQRMHd2dnZzNmzBi0Wi319fVOtUwMBJVKJRnptrY2txrptrY2qR+6vLyc8IgIqquqMLS2YrPZKPtXw/1QIu54KysrMZlMGAwGBEHA29ubsLCwLrtkZ6VBxWILR1KGp4u2tjZycnJQKBSkpKS4fK0EBQVx66230tLSws8//8wzzzyDt7c38+fPZ+rUqQQGBlJUVERzc7NUMBQWFkZYWNige/VdITAwkOuuu45ly5bx5ptv8ttvv1FZWclbb73FRx99xAUXXCCpJsXExKDX6ykqKsLPz69XgQ07IOfk2qBQKmlyQRr2+++/Z/z48ZSWlmK326VxrmcKSUlJ7Nq1q8vvwsLCpDaa3oy0xWKhoaGByMhIPv/8c2bMmIFKpZKmeombN4PB0OWnsbFRCofb7XYUCgVhYWGSKt5AN7aicT8VY1HF0cHdK7vh5Hopk8mwWq2YTKZTZqRbWlqw2WwDkh622Wykp6fzhz/8YUDvvWHDBhYsWEBISAh2ux2lUonBYHC6KNctnrQ4zNpoNEoDNcSwglarJSIigtDQUCmUJRZ6DbS9pTteXl7S2DpBEEhLS5M2DN7e3tTV1dHc3Dwko9GUSqVkpFtbW932ularVaqSFgSB2tpaPL28+OTvfx9U+N5Zj9put0uSkOnp6VJFqXgdGAwGKioqmDp1qrSoOhvuFqtU3V3EN1CsVitZWVnSpKrBLBze3t6cd955nHfeeZSWlrJr1y4++eQTRo8eLYmNiAVDp9MY+fn5cckllzB9+nSam5vZvXs3ubm5UpHZ4sWLueiii6Sq64yMDCZOnOgw9WHnZA510bnnolQqyf5XpKQ/PASBDkD/L4ENb2/v0za+sDdEtbXOHSSipy/qpjtCr9djt9sJDw9n8eLFfPzxx1x33XXS3wVBkJyZzprk4mZfTNt5e3uj0WiYNWsWv/zyy4CNtLhut7a2DnnLo9lsxmQy9Sgag3970iaT6ZR59vBvx2AgBYm5ubkkJCQMKIqRn59PdnY2zzzzDIDk4NTX19Pa2jo0RtpRTrq1tZX29nZSU1Px9PTEZDLR1tZGY2MjVVVVnDhxguLiYlJSUvDx8SEoKIja2lqXRMb7o/OC5+XlRWNjI0ajsYtc5VAsACqVSgqru7MYQvS4xGM2Go00NTaeksIPccBCU1MTZrOZkJAQSRVIo9Fgs9k4dOgQZrO5i1iBs6pj7lKucwdi76rBYCA6OtqtVcVRUVFce+21XH311Rw7dowtW7ZQUlLCzJkzmTdv3mkP68bHx1NfX49KpeKpp56isLCQjRs3cujQIb766iu2bNnC3LlzmTVrFgaDgWPHjjF+/PguNRJBISEoPT25+KKLkMlkpB0+TPrRo069v42TRTHitR4ZGXlGedFwcl0JCgrqUnEuFW32cb+L4cygoCDOPfdcHnnkEacmaImSoN09vrFjx/Lee+8NOCIoRmvE6WdDiVifI5fLezXSHR0dg6q0dgXRgfL29h7QmrNnz54BaQBYLBbeeOMN7r777i4G3svLSzLSzqw3bvGkIyMjyc3NJScnh7i4OGl0XkBAADExMVRVVVFYWMiJEyeIjIwkKCiI6upqwsLCpFyJ6IW6Y+h956puHx8f5HK5y9OZnEUcGyiOOHMX4vH6+vpit9vp6OhwWyV3QGAg45OSqK2poayurksorKWlhcLCQgwGA0qlknHjxklRCjG/X1xcjMlkIjw8vMuC7Uy4W5TcEydunW7E3KCfn9+QzZSWyWRMmDCBCRMm0N7ezp49e3jttdcwmUxMmzaNmTNnunXD6ixKpZKkpCTS09PJyclh4sSJjBkzhoKCAj7//HN2794tSY8mJSUxbtw4bDYb/v7+LFiyhPCICFpaW6lvbKROr+fnXbuoKCtz+v2tgBK476678PP35/W33hqyzzoYgoODqa2tlRZUb29vgoOD+yx8Eu8BUef5lltu4fXXX+f5558fkEcml8uZOnUqu3btGlBuVK1Wo1are50W6E4656S7d6Z0z0mfChobG2lubiY6OtrlTaDRaOTIkSNce+21Lr+vKFDTvZ5D3DA5ay/ckpMODg6mqamJqqoqMjIyUCgU0tg1Pz8/IiMj8fb2Jj09nezsbBoaGvjxxx8xm80YjUbsdjsajUaacjLY3XTnxnWZTIavry/19fVO5wBcwWKxoFQqsdlsbiuIs9vt6PV6FAqFFO5WKpV4DLKyXmTSlCmER0ai8/Fh9+7deHt7Y7FYMJvN0sKTmJhIRUUFkZGR1NbW0tzcTG1trXRufX19e1x8znjS4oUpfq7TSUNDA/n5+ajVapKTk0/J8Wi1WhYuXMjChQtpbm5m//79vPPOOzQ3NzNlyhTOOusst8jVOos4Vai6ulryNuLj43nggQe4+uqr2bRpE99//z05OTmkpaURFRXFtGnTGJWSgtlsZu/evehravi5j9CvI2ycLDYbmZxMfEICef+qBzgTESN/ol60XC6npqamz0W2e7QoJiaGlJQUtm7dKlX4usrFF1/MI488wty5cwckKKXT6aitre11GIe7aGtrw2q1OsxJd/akT5WgiSgcMpDIlViw5+q1WVpayoEDB3j++ed7/E10TobMSDsKdwuCwMiRI4mKiqKyspKGhgZaWlqkykV/f3+io6OZNGkSdXV1VFVVcfz4cRQKBb6+vtJkFJPJ1EPrdSC0tbWhVqslgxwSEkJdXR3V1dVdBqO7A6vVKo1z7FypORhaWlpoa2sjLCxM2nXrdDp0/yrCG0wbhcFu5+DBgzQ3N0vFK3Bys+Hh4YGvry/+/v5oNBo2b94s5WtF5ZzQ0FBCQkIcKmM5M1tb7FN092bJVZqbm8nMzEQQBIdDJeBk3n2wLYd9odPpWLRoEYsWLcJgMPDbb7/x97//ndraWlJTU5k5cyZxcXFDvnkIDQ2lurqampqaLkVsoaGh3HrrrVxxxRVS+LumpobNmzfz086d0NFBBye9YVeP0ApERURwzrnn0t7Wxr7du934idyLaKRFnCnCcpTSWbFiBQ8++CAzZswYUOrNy8uLefPm8fe//50bbrjB5eeLRrqpqWnIUi12u52WlhapqtuRkRav55aWFpfUIgeCzWZDr9fj4eHh8r0sFgwuWLDA5fd8/fXXue222xwad9FIOxvVcNpIi6IGfS2uWq1WyrmYTCYaGxulqu/6+np8fX2Jjo5m2rRplJeXdxmMXVBQIBVbDAYxJKtQKKTcTUBAAFqt1mldaVcQK3VbW1up6qahPVD0ej1qtZqQkBDpd2q1GpVKhV9AAPUulO87QhS4dzSSsa2tjdLSUqqrq8nJyWHevHkkJCTg5+cnjYzrDfF89xUGFC/a0ylY0draSnp6Ona7nTFjxjisrjaZTDz22GMsWbKEc845Z8gNpaenJ/PmzWPevHkYjUYOHjzIxo0bKSsrY+LEicycObPHzF53IX7+3jZXPj4+XHHFFUyfPp1vv/2Wb775Bv+gINrb2sBgABfrJOyAl07HsksuwWKxsHnjRpoaGwfcJjjUBAUFSW2D8G8j3dc1LEaTOhtptVrNVVddxbvvvssDDzwwoGO56KKLWLt2LRs2bGDFihUuXQ8BAQEUFBRQVVU1ZEbaaDR2cbS6G2nx/pfJZFgsFqnFdKhoaGjAYrEQERHh9Lmy2+1s376d77//ntWrV7v8nl9//TUpKSm91h+46kk7nRxxdXEQjcyYMWOYPHkyQUFBNDU1cezYMamdpzN2u5329vZBC4KII8Y6e3piyLuhocGteWNA0qcVBMEtRtpms0lziMUb3FMQWP6vEFmMG/KmbW1t/GXt2i69rhaLhfz8fA4ePEhVVRVeXl7Y7XaWLFlCZGSkU6PkRCPd13c42NGeg6W9vZ309HSsViujRo3q1aNRq9U899xzFBUV8cQTT0g6zKcCpVLJmDFjuOKKK7jnnntITExky5Yt3HnnnbzzzjtOCYy4giOPpzNms5ljx45RUVHBxIkTefjhh4mPi8PXz4+Q8HBCY2LQOuGlqNRq4hISGDNpEkuWLkUuk/HNpk3o/1V5e6bS3ZMWo4p9RfxET7p7JfWUKVOwWCwcOXJkQMciCAJ33nknAA8//DDff/+902k2cd6y2IkzFIjrq2h4uxe5if8vbnSGOkcu1gY4W+vU1tbGSy+9RF5eHs8884zLEb/Kykp++uknVqxY0etjfH19CQsLc7oI2GlP2hkvqTfEFqm2tjYKCwupqanhyJEjFBYWEh0djVwulwrSmpqaBhViFNsiumsgBwcHU1lZ2SOkN1jEcLdopAfrqTf+q4I7LCysy+uUFBVhtVqJS0jgyMGDA359cdpS/b/Ok9jjnp+fj9lsxtPTk/j4eGlYuSu7XPEa6SsMqFQqCQ8PH7Aow2AwGo2kp6djNptJTk7ut7JSo9Fw8803c+LECdavX4+XlxdXXXXVkBV5mUwmSktLqaur67KIajQa7r33XiwWC2lpaWzevJmqqirmz5/P3Llz3aICKA7Q6Y7BYCA9PR2TycQLq1fz6549mIxGFAoF/sHByFQqLFYr/mFheKrV1NXU0NLUhFKlIjAoiKDg4JM/ISH4+PpisVj44aefaKyr4+cdO2hws7DRUODn5yf1LsPJucRAn3OJ++pguOmmm3jqqacYO3bsgPLwCoWC3//+98ybN499+/bxyiuvdNGeUCgUyGQyBEGQ/ituxMTujPLycsaMGUNQUBCBgYFuqwcQNzO9FYV29qThZNRwKKWBm5ubkcvl/d4jdrud9PR03n//fS6++GLmzJnj8nvZ7XbeeOMNbrrppj43vWq1msrKSqc3V05/M+LJHYwH5OHhQUpKipRrFYcPhIWFSQVjer1+wMPfRYMjl8t75EzFQd21tbX9TvdxBavVikKhQKPRYDKZaGpqGtQ8W/Ei737hdnR0UF5aSlRMDF7e3rQOcAe6aPZsZs2dy9vvv49KpeLYsWM0NTUhl8tJTEyUvpuBhMSc2cip1WoqKiqk3PqpKh4zm81SiDsxMbFLKqE/EhMTWbVqFWlpabz88sskJCRw2WWXDWoYRncqKys5ceIENpsNDw8PoqOjpRyiqFAVGhrK5MmTmTx5Ms3NzezatYtHH32UmJgYlixZMuDiN3EB767TLZ4zs9nMiBEjTuah/4XFYqGmogI74POvzY7NZiN25EimpKb2WKSam5rIz8sjOzub8rIysk/xFKTBIOogiJSWlgJ9G2lH4W6RgIAAJk2axO7duwc12zk0NJSLL76Yiy++WPqdOMfcbrdLx2yz2SRJzNraWn788UdKS0tpbW1Fr9dTU1MjjR8dNWoUycnJA+qyMZlM6PV6dDpdr21inX/v4+ODXq93S0Gv2WymoqKC8vJyDAYDFosFm83G8ePH8fDwwGAwdNmwiP82mUwUFxdTUVGBr68vDz300IA34du2bSMmJqbf6WiiQ+psy+4p8aS74+/vT3BwMAkJCRQVFZGTk4NGo0EQBBoaGigvLx9QL19dXR0Gg4Hw8PAeF4kgCPj6+lJTU+PS0Ij+6Dw3FE6OHByMkW5ubkalUjlsdUtPSyM6NpZJU6bwczcVJGcIDv3/9s47PKoy/d/39CST3gshDRIISSAU6QiIILIo6IrIUlRsfC0oUgSkF0FQsazY1rL2hiIKAiIISCckISSk9957JtN+f+R3ziakTRrg7tzXlQtNZs6cmTnnfd6nfR53Bg4ejEqlIiMjg6qqKiQSCV5eXnh7ezcJ312+fJnQ0NAOHd+Ua0RQUBNaMK7HRB6dTsfly5epqanBz8+v032iAwcOJCwsjD///JOtW7fi6urKnXfeyYABAzq92TAajaSmplJYWIhCocDf318czAENN3RdXR0JCQmkpaVhbW2NQqFAqVQyZMgQRo8eTW5uLgcOHOC9995j/PjxTJw4scPRIkdHR/Lz86mpqcHKygq9Xk9CQgJarZblixe32vssASqKijAASrWakuJisrKyCPD1pba6msL8/IaugLo6jNBmodnNlotuCcELBdM86daEQ+666y42bdrE+PHju3Wj2lbqQq1W4+joiFwuJysri7CwMDHdU1NTQ0JCAlevXuXQoUOUlZUxcOBAhg8f3uZs8cbk5ORgNBpFOVnhfBrTON3l5eVFeXk5OTk5HZbFFaJiFy5cEJUCPT096dWrl3iP1NXVIZVKxeiBXq8XNyzCvwqFglGjRhEQENCl3HhRUREHDhxg+/bt7T72L2GkoSHc0atXL1xdXcnKyiI3NxedTkdtba1Y+d2WtyPk5ISLwGAwkJ6ejkQiabWFxcbGhoKCAiorK7vNOAhhMFdXV2pqasjLy2t3J9UawvtvrQ0tJTGRkuJiBoSFcenCBSo7IK/q6OTE3ffey+T/rwpVXV2Nq6sr3t7eLYamoqOjm+zQTcGUnDQ0XKT19fWUl5f3+BQsvV7P5cuXqaqqwtvbu8tSpBKJhDFjxjB69GgSEhI4cOAAH374IZMmTWL8+PEd0rY3Go0kJSWRk5ODtbU1ISEhza5LS0tLAgMDxQHzjSUjG5/ThAkTsLe3JyYmhnXr1uHh4cGUKVMIDQ01aYF1cnIiPz+fpKQkgoODSUxMpLi4mF69epkkTiIF6qur0dHgRWakpyOnQS5UfL80GOebS67ENIQFvKCgAK1Wi6OjY5shVKG9qLXHODg40LdvXy5cuMCwYcO6/4TbwMnJiaysrCYqjFZWVmIvPzQ4H1FRUZw+fZr33nuPCRMm8Le//a3VsLggHaxSqXBychKN9LU0tiNOTk5i6NfHx6ddkRZB//7ixYtUVlYSGhrK6NGjefTRR1s8L51Oh52dHY6Ojj06J8BoNPLJJ5/w8MMPmxQRENYIU8cbd9hId0fBj6BGAw3FF/7+/vj4+JCdnU1KSgpVVVVcuXKloZr5msIeoR85PT0dGxsbnJycxKrFqqoqvLy8Wv2ghNCTMCaxOxBy4F5eXiQmJnapeKyqqkqUAmyNU8eP87eZM5k2YwbfffEFFpaWDLnlFnr7+nI5MpKYqKhm35FarWbmrFl4enujUCjw9vbGz8+v1Y2K0WgkLS1NHFZvKkKeyWg0thnK9vf3JyIigvj4+B410nq9nitXrlBRUYGnp2eH309bSCQSgoKCCAoKorKykt9++42VK1fSr18/pk6dapIwSlpaGjk5Odja2uLu7k58fDzQ8Pk03jhZWVkRGBgIIArbaLVaUQSorKxMFGzw9vZm5cqVFBcXc/DgQT799FNmz57N4MGD2zTWzs7OeHp6UlRUxJ9//gk0eNeNP7PGnm5L4yalNHjJOhparISrUFh6dbS84PwVPOiXXnoJ+E+ou71ediHU3Faud+bMmbz++usMHTr0umoGCBuHtvqUlUolw4YNY9iwYdTU1LBv3z7WrFnD0qVLWwyFC5sXPz+/NutNGqdNhSheSkoK+fn5LaY5NRoNJ0+e5NChQ6jVam655Raeeuopk1JxwnjK0tJSamtre6yKXDg3YQhLewjrrqmKax3OSXeHQHttbW0zj0Mmk4l5uKioKLGPNTAwEHt7ezQaDZWVlWRnZ4sLVElJCWVlZeTk5FBSUoKtrW2bYROhQrk7K7wF+T8fH58uG2mh0rEtI52anEzE+fMMHjaM6ffcg6WVFc6urkglEkbfeith4eEkXL1KekoKFRUVWFpZMemOO5g6fToymYygoKB2vcmcnBzc3d07vHAIF117Qgv9+/cnIiKCuLg4xo4d26HXMBUhH1VaWoqbmxt9+vTpsYXQxsaGmTNnMmPGDC5dusRnn31GaWkpo0aNYty4cS0uKJmZmWRkZGBtbY2HhwdXr14VNzZqtbrVwhuJRIJSqRQnJjk4OIj97tnZ2WRnZxMbG4u1tTULFixAo9Hw5Zdf8t133zFnzpxWUxgSiYQ+ffogl8sbhrl4etK7d+8OF/hJaFhUJDQYZS3/kf+EDrST3KSkp6cDbYe64T/rZFvXnLu7O7169SI+Pr7T0bfOoFAoxLZRU7CysuL+++9nwIABrF+/nkceeaSJQTIajWRlZYkT3Rpz7fsX8sEGgwGDwYC7uzvp6elkZ2fj7u4uXm/p6ekcPHiQy5cvM3r0aJYvX96pPLmfnx+XL18mOTm5R7zpvLw8Dhw40KJoSWsIacVuN9KC9e8OA9eSkRawt7fHxcWF+vp6LCwsiIuLa/J3mUyGl5cXHh4eVFdXExcXR1VVFR4eHqIIutArXVFRgUKhwMHBQeybVigU3SpHJ3jSgseR04HxkdcilOQLn7XBYKC8vJyQgQMpKykhNycHvV7PqePHMRoMBIeGIpPLuXDmDOdOn6ZfcDDDRowQfwQqKypEcZf2FheAiIgIMezVEYQNi7Ozc5uLkyAzGmviIIaOYjQaiY+PF/WWe6q/+FokEgmDBw9m8ODBVFZWcubMGd544w10Oh1jxoxhzJgx2NnZicUqgq5AXFwctra2qFQqioqKOrXjV6lU+Pv74+npSUZGBnl5eURFReHp6clTTz1Ffn4+X3zxBd988w3/+Mc/WjQKEokEPz8/fHx8mhjnljxd4XctedSNDbVgpA00eNktHeOvhBBlGNDOzGw7OzuTWmwmTZrEvn37rquRhv/oR3dECzwkJISNGzeyY8cOcnJymDp1KtBQ7FpTU0OvXr1MUkKTy+WivrcwDS4rK4uCggLy8/PZv38/Op2OO+64g0ceeaRLnSCOjo44OTlRXFxMQUFBt0buDAYDb7zxBosWLepQ4ZtSqcTR0dHklKvJRlpY3DO6YTyiMFKyNWxsbFAqlXh6eorSoSqVStQDFy4ECwsLRo4cSW1tLWq1Gq1WK4YQhRtEkBy1tLREJpOh1Wq7VX5QMNJhYWFAgyiLwWDo1IUlFDMkJiYilUqprq5Gr9cz4f9r9ep0OpISErh47hynTpwg7soVKisq0Ov1GI1GYqKiiL18GR8/P5ycnbG1s0On05GWksKsOXOwsbEx6bz+/PNPVqxY0eHzF4x0ezvewMBApFIpqampYqFSdyF8fgUFBTg6OtK/f/8b0u5lY2MjqomVlpZy8uRJtm7dikqlon///jg5OeHs7MyVK1fEiu78/HxcXFw6XV2q0+koKChAp9Ph5uZGZWUlOTk5FBcXExQUxLJly0hLS+OLL75Ar9fz+OOPt7hoddfnJSz9Whry0X89k9yUtLQ0kpKSUKvVDB8+vM3HlpeXi1XWbREYGEheXh7l5eU9Pp2qMUK4uaPftYODA+vXr+eVV16hvLycWbNmkZ6ejlQqbZICaOt9N06dqlQqvL29SUxM5MUXX6R///7Mnz+/W4eABAQEUFFRQXx8PEqlskuFvY0RNldBQUEdep5SqaSkpMRkO2SytRLkNIVwT1eQy+Vt7jINBgNKpRJra+t2p5bIZDLkcjnJycnk5+eLX7yXlxe2trZotVpyc3PFSTtKpbLbdq0VFRVUVFQgl8vp3bs3rq6uFBQUkJmZ2Sn5US8vL+rr6yksLBR1b19cupSSkhKcXV3x9fenX3Aw/YKDib18mZjo6Gb5Z4PBQGpyMqnJycB/vJVz586ZJICRn5/fYi2AKTSe/NMWFhYW9OvXj9jYWI4cOcL06dM7/FotYTQaSU5OJjc3Fzs7O4KDg2+Igb4WBwcHpk+fzvTp00VP4f3338fa2pqRI0dyzz33kJKSIrbBdcbrr6ysJCkpSZRahIbP2cfHh8zMTK5cucKQIUPw9fVl1apVxMbGsnXrViZNmsS0adN6LNIgoyE/rafBmxYM91/RixZkIseNG9eudLFcLken06HT6dp8rEQiYfLkyRw6dIj77ruvW8+3NbRarTiBqTPfu1KpZMWKFezevZtXXnmFYcOGNesOaYtrVQdzcnL46quvGDNmDNOnT+9Qe6QpWFpaEhISQnR0NHFxca2qDHaEyspKjhw5ws6dOzv83I7Wd5m8gnl4eKBUKikqKuqyMLrQgtMawrCHtnYaRqOR8vJyrl69yrlz58jOzsbGxoagoCBuueUW+vTpg6urK15eXgwdOpSxY8cyduxYhg8f3m1iJoJqUEhICFKpVJTZTEpK6tTxLC0t6d+/v3iuI0aM4PzZsyQnJnL2zz/5+tNP+f6rr0iMj6d/SAiz/vEPZt5/PwF9+7ZrjAwGg0lh/uPHj3eqkR+ahrvbQ6gc37NnT7epj6WlpYnXQUhISKdG+vU0bm5uzJs3j1dffZUFCxag1+tZvXo1+/fvx9LSslO69aWlpURGRlJZWYmfnx8jR47Ex8eHuro6ampqCA4ORi6XEx8fLxrw4OBgXn75ZYqKinj55ZdbrcbtDhQ0LDSCof4rotPpOHr0KGCalnPjSXztMW7cOE6cONEt9T7tYTQaSUhIQK/Xd8mjlEqlLFq0CI1Gw0cffdShFI1wDRqNRs6ePcuuXbtYt24d/fr1Iz09vUc+B1tbW7GVTOj26ArffPMNM2fO7NT9qtFoMBqNJnvSJhtpqVQqFhx1NeQtDKRoDWGUYWsh8cLCQi5cuEBCQgL5+flYW1szYMAAQkNDmxQftPQeutOzuvD/lb+GDBkCNIheQMOQ8M5ybQiq2mgUfwBysrL4dd8+vv70UxLj4/Hq1Ysx48ezcNEibhk1qiFMfs1zoMGrqq2tbbeF7vTp04xolM/uCELlq7u7e7uPHT58OH379sXKykr0ULpCRkYGGRkZqNXqTis5XS/kcjne3t6MHz+eRYsWsXbtWpycnHj//ffZsWMHV65cMVn2s6ysjJiYGCQSCWFhYaJH4+Pjg5OTE1VVVahUKmxsbMQQrIBSqeTBBx9kxowZbN++nV9//dXk11VLJC3mo1tCQtMK778ily5doqysjF69eomV9m1hSgW1gIWFBaGhoZw/f77L59ke2dnZFBUV4eTkZNJ92haFhYWMHTuW+++/n23btnH8+HHxb4K9aCkSKnjvBw4cYP/+/WzevBk/Pz88PT2pra2loIdkYh0dHQkICECn0xEZGSkqRHaU/Px84uLiGD9+fKfOo6ysDKlUanJIv0MWSwjhpqWldfjEGqNWq5vI2DWmtraW8vLyFlVrdDodcXFxxMbGotFosLe3Jzw8nPDw8E6HbjqLwWAgIiICgKFDhwIN+SWj0cjx48d7fAxbYUEBv+7bxyfvv8/lyEjq6+sZPmoUs+bObfG17e3txYkwrZGSkoKLi0unZSaT/3+I3RRFN4lEwt13301GRgZfffVVl4r5srOzSU1NxcrKirCwsE6N8buR6HQ6wsLC2Lx5M3fffTeHDh3i+eef58CBA22mhSoqKoiJiQEaojmNPSNBL6C2tlb8XqDlitKgoCC2bdtGWloamzZtMkmu8NpNYHt/l9FgrIUisr8aBw8eBBq8aFPWGV9fX7y9vU322KZNm8bPP//cpXNsj/LyclJSUrCwsCAoKKhL66Veryc1NRVLS0tuu+02XnrpJS5cuMDOnTspLy9HIpGQkZHRRE5VQGijjYmJYe3atWInQ69evbC0tCTt/0sg9wQuLi5i5DM+Pp6rV6+aJCoiKLZVVFSwe/duJk2aRHJysngMwS5duXJFTL22tgEQ/mbqOtshdyMgIIAjR44QExMjVvZ1BqlUipWVFZWVlWLo2Wg0UlZWRlJSkphTbozRaCQ2NpbS0lIcHBwICgq6LmpVrRETE0NFRQVubm7iuQYHBzNt2jT279/P4sWLuffee7ntttt6dHZrZUUFEefPExURwcixYxk0ZAjR0dEM/v/KYgJubm4UFBSQmpqKXq9vMeKwZ8+eTueH6+rqqKysFPPzpjBu3Di+/fZb0tPTeffdd3n66ac79JoGg4GkpCRyc3OxsLAgLCysRz/rnkCv15Ofny92IQjV6BUVFRw4cIDnn3+emTNnNlOmqqysbDLJq6XQpZ2dHW5ubpSUlFBZWYmrq2urYUkLCwueeOIJLl26xLp165g/f363imwI3rTQQ/1XIjIykrNnz6JUKpk4caJJzxF02E0dIOHp6YlCoSA9Pb3bx+lCg0cvjGYNDg7u8kY2PT0djUYj6i2oVCqWLFnCn3/+yYYNG1CpVNTU1LSYyqqvrycvL49nnnmmiSOmVCrx8PAgJSWFtLS0bpVvboyjoyNDhw7l6tWrFBQUUFJSgkqlEgtYG4fjDQYDGo1GlC5NT08nJSWFCRMmiMpzjREeL1SVtxTRE0Yam1og2iEjLYR1IyIiOlS6X19fL06nEj4Ad3d3jhw5Qnh4OJWVlVRUVKDVapFIJPj6+jYrPkpLS6O0tBRXV9dOaxR3FxqNhnfeeQegyeIpl8u59957uXz5MpmZmbz99tt8/vnnTJs2jWHDhuHv799jhUx6vZ6Tx45RXFTEndOnExsby8CBA8XXs7S0pG/fvsTFxZGYmEhycjI2NjbY2tqiUCgoKioiPT1dVJ6Sy+VYWVmJcq3tkZ6eTkVFBQEBASYvABKJhCVLlrBs2TIOHTpEUFAQkydPNum5Go2G2NhYKioqxHzTjdy0dZaSkhI0Go04aEbA1taW+++/nzvvvJNvvvmGX375hTlz5hAeHi4OvTAYDAQHB7dZ5BcYGEhiYiJubm64uLi0e8+Gh4ezefNmXn/9daKioliwYEGXFvTGrVpS4M6//Q1LS8tulebtSerr63n77beBhnnQpuq1NxZOMpXp06ezb98+nnrqqY6faBvU1tYS/f+LTPv379/lmpy8vDwyMzNRq9XNnKnRo0czatQofvnlF44fP96ikZbJZPTr16/F8/Dy8iI/P5+srCysrKx6bJiNUqkkNDSUkpISSktLKSgoaDECKegS1NbWcvXqVU6cOMG0adMICwvDwsICmUyGXq+nsrKS8vJyiouLkUgkbdbZCMXXps6o6JCR9vT0xMPDg5ycHK5evdpur6Ber+fq1avNQqwWFhZ4enry448/4uDggEQiwcrKCmdnZ7y8vJqFAerr68WL4nr1vLZGeXk5u3btoq6ujr59+zJr1qwmf3d1deWtt97i1KlTfP/998TGxvLFF1/wxRdfYGVlRXBwMKGhoQQFBdGrVy9sbW1Nfj+mVsQmJCSQm5vbbMKMg4MDw4YNIzs7m7KyMvHCAti7dy+DBw9ulk+3srIiJCSk3cIQoU7BlD7sxvj7+/Pkk0/y2muvsXv3bnx8fNptaSgtLSUuLg6tVounp6c4iEIQ1dfpdOj1evFftVqNu7t7t04/6y6ysrIwGo2t5gdtbGxYuHAhBQUFfP755/z444+MHj0aS0tLgoOD2213k0qlHW4RsbOzY82aNfz000+sWrWK5557rtNDb5qcCw2h9fj4eE6dOtWl4RLXi2+//Zbc3Fy8vb07JJMrGOnW0notMWjQID755BNx49kdaDQa4uPj0Wq1BAYGdnmOdGlpKQkJCaKRa2nTJ5FICAkJwdHRsUVjJbSotuSwSKVSQkNDuXTpEomJiahUqk4NsjEajURERODu7o67u3ur5ykoVgYEBIgh9sLCQrKyskQFzNTUVDw9PRk4cCB2dnZMnDgRnU4nDvMoLy8XnU9Bf9/d3b3VuhhhjTWltgE6aKShwXP85ZdfOH/+fLtGWqvViiLn3t7eWFlZiVNI+vTpw5kzZ/Dw8MDf37/NQp+CggJRuP1GVOwKvbe//vorx48fR6PRYGVlxerVq1sMr0qlUlG44plnnsHFxQUrKytyc3O5cOGCWHAGiLtR4cfJyQk7O7smPx2dEOPj4yOO5by2D1ahUIiSlQaDgerqanE04vTp00VJz/r6etGAVFVVtWukhaKxzmhjT5w4kfj4ePbv38/69evZsmVLM+U4IY91+fJlYmNjyc7Opra2ltzcXJPz/4Kx9vDwEG9e4f8bD7W4XtTV1VFRUYGLi0u7XqWrqyvPPfccx48f55///Cd33XVXj6m1wX9qBgYMGMD27duZMWNGi0bV1I2j8Lhff/2V+Ph4fvvtt5veSKelpfHdd98B8NRTT3WoGFHYEHbESEskEmbNmsU///lPXnjhhS5fjxqNhujoaGpqaujbt2+XC8UEuWbBkLZ1zbY1NfHauQvXolKpCAkJITIyktjYWAYNGtSqAl9rnD17lm+//RZXV1fy8vIwGAy4urri6ekpjhYWzkGv15OTk0Nubi56vR4XFxe8vb3x9vZmxowZ+Pj4UFtbS3p6OuXl5U1EmGxsbHB0dMTOzg57e3vUanWb0dKSkhIKCgqwsrJqV1pWoMNGOiwsjC+//JLTp0+zYMGCNi8kpVKJQqHAYDCQn59P7969m8hNzpkzh71797Js2bI2X7OoqAipVNptetutYTQaqampobi4mNTUVJKTk8WfxoZgyJAhPPnkk23uSnU6Hbt378ba2po777yTOXPmUFRUxOXLl4mJiSE1NVXciSUkJLRZEa5UKsWLwNbWtokBb/w7e3t77OzsUKlU2NnZtasoJJVKsbGxYc+ePdx3333i51tWVtZkWpgpBQ6CJ23qhXctjz76KMXFxZw9e5Y1a9bw0ksv0bt3b7Kysjh06BCnTp0ShwIolUosLS2xsLDA19cXf39/1Gq12DMvk8nE/5ZKpVRWVpKbmyuOfGxcSCVgZWVF3759CQwMJCgoiL59+3brKMqWEIRwOiJ36ObmxsKFC0lJSeGll17iqaee6javqyX69OnDtm3b2L17N5GRkR1WV7qWsWPH8v777xMdHU1eXl6XDUdPUV5ezqZNm9DpdEyZMkVUyTMVQZhE+I5NZdSoUcTExPDTTz9x9913d+i5jamqqiImJgaNRiMq0XWFuro6YmJiMBgMhISEtGs0BSOt1WrFjb4guiQY7raMmbW1NcHBwcTExBATE8OgQYM6dN3V1dUxduxYZsyYATRs8gsLC8nJyWlSpGo0GpFKpYwbNw4PD48mGzGhruD8+fNoNBoSEhLo1asXzs7OTYxyRzZTjb1oU5/XYSPdv39/bG1tycnJISkpSewNbgmpVEpISAjZ2dkUFhaSkJBATk4OAwYMwMLCgiFDhnDo0CEiIyPblaG0tLRsdScr9FULPxqNRkz2C/9e+6PRaKitraWiooLS0lIxN3FtlbEwazUgIIBbb72VKVOmmFQ6v2/fPjIzM/Hw8ODvf/870NA/PGHCBNGDEHq9s7KyxFmopaWlVFRUUFZWRnl5ORUVFaLAiTBruj2srKxEMZTjx4/j6uqKg4NDkx/BoBcXFxMVFcU//vEP9Ho9iYmJ5Ofno1KpcHd3x9/f36ScpGCkOztlSi6Xs2LFCrZs2cKlS5dYtmwZEomEzMxMjEYjMpkMPz8/Jk2aRHBwMH379sXX17dT+VJhWpnwIxjuK1euEBUVJT4uPDycXr16MWLECLHXuDsR8lcd2QxYW1tjbW3N5MmTyc7OZvXq1Tz00EMMHjy4W8+tMZaWlixZsoTff/+dlStXsnz58k7nCtVqNaNGjeLYsWOcOHHiugl4dIT6+nq2bNlCQUEBgYGBPPbYYx0+hrBZ7Uy76sMPP8yLL76Iu7t7u8pm12IwGCgoKCA5ORm9Xk/fvn1bNdB1dXVcvXpVjCi1RnV1NdHR0dTX1xMYGGjS9SqIuZSUlHD69Gm0Wi0qlQqNRkNxcTEymYzi4mJcXV1bNVaOjo707duXhIQELl26RGhoaJubA+F+DgoKoqKiokl6SyqV4ubmZpJQilarJSMjg5ycHFEAy9PTk8zMTMaPH99uBLkthCE6HUlBdXjVkclkTJgwgb1793Lw4ME2jTQghrobC6lfunRJVH159NFH2bx5M1u3bqW4uJiioiJKSkooLi6mpKSEoqIiEhISMBgMODo6NjPG9fX13dr8bmFhgYODA71790YikfDrr7/i4uLCjh07TNZ91Wq1/PDDD0CDh9haxbEw49re3r5V8Xej0UhdXR3l5eWt/jQ26mVlZdTU1FBdXS32HLZmyHx9fblw4QKTJk2ipKSEnJwcysvLsbe3p0+fPia3CFRXV4vzkLviGSkUClatWsWrr77K999/T2ZmJn/729+48847mTRpUrd5jFZWVvj7+zcLqdfX15OamkpCQgLx8fHExcVx6dIl9u3bh7W1NcOGDWPEiBEMHTq0y1XkOp1ObDXsyEbD2dmZjIwMioqKMBgMzJo1i++++46LFy/y4IMP9mj72cSJE/H19WXr1q08++yzna6+HT58OMeOHSMyMvKmM9J1dXVs3ryZuLg4nJ2dW01ptYdQoZ2RkdFhmWC5XC5Gk8rLy9sspjQYDNTW1lJdXU1VVZUYAZPJZAwYMKDNKI1Go6G8vLxNo1teXk5MTAx6vZ6goCCT7m+9Xk92drbYly+MHVYqleIMZ61WS3x8PBkZGfj6+rbaQuvh4YFEIiEhIYGoqChCQkJalU8Vxt9qNBpycnI6JcpkNBq5cuUK5eXlWFlZNTm3EydOdLny/urVq0APG2mAKVOmsHfvXv744w8WLlxoktqMQqGgT58+2NjYiB94eHi4WFk3YsQIxowZQ2ZmJgaDgbq6OtGr1Wq1qNVqscjpWqRSKUqlEpVKJU4IEgZKXPtz7e9tbGxwcHDA0dERBweHJu/FaDSi1+s5f/48mzdv5uWXXzYp5PLHH39QWlqKr6+v2EPdWSQSCZaWllhaWpp0gwjDRRITE4mIiBCnhwkbmdraWkpLS8XxbdAg1LB8+XLCw8OZOnUqffr06dCiIoSP/f39u1wzoFQqWbx4MTk5OTg5OaFUKrn99tuvS9GXUqkUx08K+fmEhATOnDnDmTNnOHr0KEePHsXa2prbbruNqVOndlpjuLS0FIPB0OHJPiqViqFDh1JSUkJhYSElJSVMnjyZmJgYXnjhBZ5//vluKfJqDX9/f1atWsW2bdt4+OGHTR7P15iwsDAkEomod3CzVHmXlJSwefNm6urqsLe3Z/369Z1OeQhjdIuLi8nLy+vwd6JWq1m7di2vv/46qampzJw5U4wQajQaDAYDVVVVzSJ/crkcHx8fvLy82t2wCYVSrd2zRUVF4oCj9gw+NKw9BQUFpKSkUFZWhkKhwNbWlmHDhokGWBjFazAY8PLyIjc3l9jYWBwcHOjTp0+LOv7u7u4oFApiY2OJjo6mf//+LaY+G8uN5uTkdOo+KCgoEOfcBwUFNVkHr169ygMPPNDhYwoIkUowvWgMOmmkvb29GTBgAFeuXOH3339n2rRpJj/Xzc0NuVzO5cuXeeONNygsLBSnValUKgICAjAYDFhbW2NnZ4eXlxf29vb4+flhYWHRzBgrlcoeU5cSWoSWLl1Kamoqr732WrsFHUajkT179gBwzz33XPdiJIlEgrW1NeHh4bi5uVFVVUV5eTk1NTVYWlqKXrJUKkWj0ZCSksK//vUvzp07R0ZGBrfeemuH28SEC6+7+hotLS3ZsmULK1asIDMzk1deeYV169bdkM9SMNoLFiwgOzubP//8k4MHD7J371727t1LWFgYU6dOZcSIER26DsvKygA6ZQQUCoUYuquuriY1NZXQ0FD8/PzYunUrf//73zuthmQKHh4ebNiwgS1btlBZWcmYMWM69HxhpGxycjJxcXGdmrjW3Zw8eZLdu3eL2gc7duzocr7c19eX4uJi0tLSTDYYQoi4srKSyspKRowYwd69e3njjTe4/f8P2oEGI65UKrGxscHCwgJra2vUarVo5Ey5h4X76dpIpNFoJCcnh+TkZGQyWZveq4DQEllbW4vRaBQdMqFQWEB4LZlMRkBAAL169SIlJYWCggIuXryIr68vvXr1anavOzk5ERYWRkxMDLGxsQQEBODp6dnisaVSqRil6igVFRUYjUa8vb2bfIZC/3NXZlILveUeHh4dGqbSaes2ffp0rly5wpdffsmECRM6NMnI0dGRo0ePcvjwYRwdHZkxYwazZs2irq6OuLg4lEol/v7+uLi43PABCdbW1qxevZrHHnuMU6dO8fPPP7cp+BEREUFqaioajUacjHWjaLwwlJWVkZKSQm5uLkajkcDAQFQqFUFBQdx7771YWloSERHB66+/zltvvdUh1TFBq1yQRe0ObGxs2LhxI0899RQXL17kzJkzjBw5stuO3xm8vLyYNWsW9913HxERERw4cIBz584RHR2NnZ0dkydPZsqUKSblvaqqqpDJZF2eAKZWqxkwYACZmZmkpqZy3333cfbsWSIjI3niiSe6VOTVFvb29mzYsEEMyXZkow4wcOBAkpOTiYqKuqFGuqKignfeeYcTJ06I57Vs2bJumUjl5+fHxYsXSU1NZdSoUW0+VhgElJGRIXq4UqkUtVrNo48+yocffkhlZSUTJ05EpVI1GdKQkZFBZGQkCQkJpKWliR0agj50QEAAI0eObCaXKxyjsbqXVqslISGBoqIiVCoVoaGh7a4FdXV1xMfHU1FRgYeHB76+vkil0hb7hYXKbmFdF6bCubu7k5iYSFZWFnq9XuxAaYydnR2DBg3i8uXLJCUlUVpaSlBQkBgxEN5HRUUF1tbWndrUW1paIpFImin9XblypUPeb0tcuXIF6FioG7pgpEeNGkX//v2Ji4vj22+/ZcGCBSY/d9++fZw+fRqZTMbTTz/NlClTKC0tJT4+HoVCwaBBg7q0Y+kuysvLOXz4MH/88QdhYWFcuXKFb775hilTprSap9qzZw8SiYSRI0eyfft2bGxsuO2227jllltuqJ60vb09AwcO5PLly+Tl5aFSqfD19UWr1VJfX88DDzwghsl/+uknk8M6lZWVYrFVe/UJHcXZ2Zn58+fzww8/sGfPnhtupAUkEglDhgxhyJAhFBUVcejQIQ4ePMi3337Ld999x+DBg5k6dSpDhw5tMZQopHM6u5C0dD69e/fGaDSSlpbG7NmzSUxMZOXKlSxevLjFBa87sLKyYu3atWzfvh2FQmGyEA009ATv2bOHyMjIDq0d3UVNTQ0//fQTP/74I9XV1VhYWPDQQw8xderUbovYCJ97ezLKgryrTqfDysoKd3d37O3txQJQgA0bNrBy5Uo8PT0pLS0lKSmJ5ORk6uvr8fX1JTAwkKlTpzYrptTpdMTGxnLmzBk+/PBDpk2bxpQpU0RtCqlUSmlpKT4+PuLAIo1Gg5OTUxMD2BpGo5GsrCxKSkoIDAwU0z+CMRYquq/12q91vhwcHAgPDycqKoqMjAx69erV4nqpVqsZMmSIOC/+4sWLBAUFYW9vT0lJCVKplLi4OFF4q6MIhWlFRUVNRIKOHz/e5ZbHc+fOAXS4yLPTVkMikfDII4/w/PPP8+OPPzJp0iST8nO5ubl88sknSCQS7rvvPkJDQ6mpqREl60JDQ2+ogRbykL/88gtZWVlMnjyZHTt2oFKpWL9+Penp6Rw5cqRFWdSioiKio6NRq9WsWrUKtVpNZmYmR44c4csvvyQkJIRJkyb1mNxdewihq8jISNLT07G0tBRzvSqVinnz5rF27Vp+//13Zs+ebdJi9d5771FZWUlISEiPyBlOnjyZf/3rX+Tl5VFdXd1pXfGewtnZmTlz5nD//fdz/vx5Dhw4wMWLF7l48SLOzs5MmTKF22+/vUk+r6amhvr6+m4dQA8NQjJZWVnk5eUxceJEAgMD2bVrF5MmTeKOO+7okXSBQqFg+fLlrFu3TpRbNAWhWj45ObmJPHBPU1lZyeHDh/nuu+9ENbBBgwbx5JNPdns7mGCkU1NTW31MWVkZFy9eRK/X4+XlhbOzM1KpVKzJEYyZRCLhjjvu4LXXXuPOO+8kPDyc2bNnt+vxy+VywsLCCAsLo66uju+++45Nmzbx/PPPo1arcXR0pKioiLNnz6LRaJBKpfTp06dZKLk1DAYD2dnZ2NraNln/JRJJk3GdgrFvq0daoVCIG9e2Bl8oFAoGDBggdmVER0eLleNOTk6cPHmSuXPntnvuLSG0VuXl5YkbHmFmxKJFizp1TGi454VBOB3dQHTJtQsMDOS2227jyJEjbNu2jVdeeaXNSkij0chbb71FfX09Y8eOZeDAgWIyXa/Xd8ucz85SX1/P8ePHOXjwIC4uLkybNk0cbSYwYcIEXnnlFQ4ePNiikRY8yrCwMNGYeHt78+CDDzJv3jwiIyP55ptvKCsrY+rUqYwZM+a6e9dyuZzQ0FAuXrxIcnIy/fv3F/82cOBAnJycyMvLIy4urt3e0HPnznHs2DGUSiXPPPNMjxgBoTI0MzOTwsLCm85IC8hkMkaMGMGIESPIy8vj4MGDHD58mM8//1xMCd133314eXmJxqGjAg2mnIOjoyMFBQVotVq8vb156aWXePvtt8nOzmbhwoU98h0plUpWrVrF2rVrsbOzMymiolKpRJnapKQkwsPDu/28BAwGA5cuXeK3337jzJkzYgi2f//+zJs3j9DQ0B55XS8vLywsLMjPz29RWAgQ60RKS0spKipqps5oZWUlDoBQKBRUV1fj5OREbW0tKSkpSKVS/Pz8TMq/WlhYMHfuXE6fPs2qVatYtmwZgYGBKBQKNBoNdnZ2eHt7d+i6FELMLT1HMNJ6vV400sJn31KESWjPUigU7XrwEokET09P7OzsyMjIQKfT4ejoiIuLC3l5eR1WPmx8DoIzINwrUVFRhIWFdSn1GhkZidFopF+/fh3OlXfZQjz22GPExcWRlpbW7pCEY8eOER0dja2tLTNmzBCVrrRaLa6urh2udO0O8vLy2L9/P5cuXWL06NGsXLmy1WKeUaNG8e6775KcnNyiEH5kZCRAizk2mUzWJER64MABnnvuOUaMGMEdd9xxXd+7SqXCz8+PzMxM8vLyRMEPqVTKhAkT+O677zhy5EibRjolJYVXX30VgPnz5/eYxi40qG1lZmZSUFDQY6Hb7sTd3Z0FCxYwZ84cTp8+zU8//cSRI0f4/fffGTt2LIMHD0Yul/eICEnjwhz4T7X8p59+ys6dO3nuued6ZGNoY2PDypUr2bRpExs2bDCpIK5Xr17ExcWRk5PTLUa6vr6eqqoqqqqqyMvLIz09naSkJC5fvixujCQSCeHh4dx9990MHjy4R4sR5XI5gwcP5tSpU5w9e7bFWhaVSkVwcDB1dXXodDpxqIPBYBC9SeG/jUYjEydOpKCggFGjRlFZWYlGo+HSpUstViO3xsiRI/H09OTll1/m6aef7lKuta0K8caCJkJthJDrbcmZEzSt/fz8TH59tVrdxNH46quvOh01ElKu0BB+F97Tvn37mD9/foeP15gTJ04gkUg6VdDZ5bvVysqKF154gaVLl3Lo0CGCg4NbHIreuOr5wQcfRKfTIZPJyM/PF2XmrhdGo5GoqCh++uknNBoNd955J/Pnz2938VIqlQwbNoyjR48SExPTxEgLxwTabUtxdnZm3rx5zJ49m5MnT7J9+3acnJyYNm0aAwYMuC5VzMJUrIKCAlQqFZWVlej1esaPH893333XRLr0WnJzc1m7di3V1dWMHDmy05OzTEXYwHRUvelGo1AoGDduHGPHjiUqKoqvvvqKY8eO8eOPPxIeHo63t3ezXu2uUl9fj0qlarJYSyQS5s+fz759+9i4cSMrV67skZSSq6srjz76KK+//jrr169v9zr29PREr9dz+vRp1Go1tbW1VFZWUltbi1arFY2VhYWFeH0aDAb0er3YWigY5ZbakQAxcuHh4cGkSZOYOHFijysXNmbEiBGcOnWKc+fOtXqfCC2WpjBmzBgiIiLE66aiooLU1FQKCgrQ6XQEBweb1Abp4+PDiy++yJYtW1i4cGGni1z1ej1WVlYter4qlYqqqio0Go0YIRW+o5aMtFarRafTddphqaur488//+SVV17p8HOLi4tFydOgoCBRTTIyMhK1Wt2l+7S2tpZz586h0+m45ZZbOvz8btlS+/n58fjjj/Pmm2/y1ltv4ebm1kyc4+rVq6SlpWFnZ8f48eOJioqivLwcNzc3fHx8rkuvpE6n48SJE/z888/4+PiwYMGCDudRg4ODOXr0KLGxsU0qWrOyssQxmqZKYyoUClGBTMiDf/jhh0yZMoVbb721xypz4T+DF2JiYigqKkKtVlNXV0fv3r1RKpWUlJRQU1PTYvXxhQsX0Ov1BAcHs2zZsh6vwBdC3D09o7unkEgkDBo0iEGDBvHbb7/x73//m4SEBBYvXswtt9zC7Nmzu63orra2tok2cWOmT5+Og4MDa9euZfXq1S2Ot+wqYWFhXLhwod0uCGjoufb19eXgwYNERUXh6OjY4ixrb29vURu+LeRyuajI5uzsjI+PD/369aNPnz64ubndkME8Q4cORSqVEhMTQ1VVVZdTHL169eLYsWPi/9va2hIaGkp8fDwFBQXEx8ebLGHq6urKhg0b2Lx5M/fdd1+H1c2gwUjX1NS0+NkK65egxwBte9KCDSgvL29StCVEEQRaW2+++OILpk6d2mHxGZ1OR2JiIlKptIlOuMFg4NNPP2XFihUdOt61nDlzhvr6egYMGNCpDWK3xb0mT55MWloa+/bt480332T16tVNJCL3798vPk5IxtvZ2YnDDXqSmpoaDh48yO+//86wYcNYvXp1p0UKhBvgypUrTaoWhab/0NDQTi0GgYGBBAYGUl5ezsGDB1m2bBnh4eHMmDGjxzSkLSwsCAwMRKfTodFoxJ5GT09P0tLSyM7ObmY86uvr+frrr6moqODRRx/tUYUrAcFImzKc/WbH3t6exx9/HHt7e7799lvOnTvHuXPnGDx4MLNnz24SuusoGo0GrVbb5ujKMWPGYGtry/r161m7dm2PXFvz5s3jhRdeYODAgW3KxNrb25Oeno7RaGTcuHE4ODigUCiwtLREoVAglUqRyWSiUpXw/1KpFJVKhY2NjWiUra2tW92c3EhsbGwYN26cGPJuKcrYEZycnJppz0ulUvr164dWq6WkpKRDU7SEVrr169ejUqk63A4n5JhbikIK0YG6ujrxd4In3dK64enpSUFBAefPn8fKyko0zpaWlk3ufUGEytraGnd3d5RKJZGRkWRkZPDQQw916PwBcnJy0Gg0BAQENNlEHT58mAEDBnS5wPOPP/4A6JQCGnSjkQZ45JFHqK2t5fjx46xfv56dO3fi6OhIeXk5J0+eFCsUAXEeZ096YUVFRezbt49Lly4xadIkduzY0WXvVCisKC4uprCwUPwCBXGKrn6hdnZ2zJo1i3vvvZfTp0+zefNmgoODuffee9tcfDuLra0tw4cPF8VOoCFEmJaWRlZWVjMj/csvv1BeXk5AQMB1q1K3t7fH29u7W+VfbwS1tbXilJ3AwEAGDBhAYmIiX3/9NWfPniUiIoKwsDBmz55NSEhIhw2O4IW2d52EhYXxyCOPsHXrVjZs2NDtxXgKhYKnn36at956i+3bt7f6PoRU11133dXukJ2/MiEhIRw7doxjx4512UhLJBJsbGwoLy9vUtktkUjw8/MjMjKSzMzMDulLq9VqXnzxRdatW8eiRYs61MfblpFuyZNuK9xtZWXF4MGDiYuLQyKRiL3WwsZNqPoWZIiFkZJ2dnZ88MEHbNy4sVObNGED0HjtTkhI4NChQ2zZsqXDx2tMeXk5ly5dQiaTMXr06E4do1uNtFQq5YknniAzM5P4+HhR7ODw4cPodDqGDRsmfhBdFXFoi7S0NH744QdycnK46667mD9/freNuBRUqITqaOH9CIUp3VWdLpPJGDNmDKNHj+bkyZNs3LiR0NBQ7r333m4RWmiMRCJpslALlZHZ2dlNHldQUMA333wD0O4EtO5EqVSSmZl5w1rXuouSkhLq6uqaeDl9+/blxRdfJDU1la+//ppTp04RHR1NcHAwDz/8cIcWzIqKCmQymUmbuZCQEGbOnMm2bdtYu3Ztt0dEfH198fX15fTp060KeRQUFACYJP7yV2bUqFG88847REVFUVRU1OWc+ODBgzl//jyTJk1q8nsbGxssLS3F+cYduT/t7OxYtWoVmzdvZunSpc0iIMJYW6E2QDh2UVGRqAJ5LS150m2Fu6HBsJtSRKjVaikqKiIiIoJdu3bx0EMPdboQU5iqp9FoxFTfW2+9xYsvvthlp+7gwYMYDAaGDRvW6fPrdjdWpVKxdu1aPD09SUlJYevWrfzyyy8AHVYl6ghGo5HIyEjWr1/Pv//9byZNmsTLL7/M2LFju30GtfBhN94hdreRFpBIJIwdO5ZXXnmFgIAA1q5dKw6G7ymEfsfGRrq6upoNGzZQVVXF0KFDe3Tq0rUIG7q/ak4aGq7P3NxcZDJZi4u0n58fL7zwAv/85z+59dZbiYuLY+nSpezatYvS0tJ2j6/X6yksLMTKysrk+o7Ro0czfPhwdu3a1WZfameZPXs233zzTRNFq8aUl5fTq1evHtUavxmwsbFh5MiRGI1G9u3b1+XjjR49mlOnTrX4NysrK7RabaufeVu4urqybNkydu7cSX5+PtDwHV2+fJk///yTiIgIEhMTSUlJITs7m+TkZIqLi8WRjdciGDhTw90dQaFQUFtby/79+5k3bx5WVlZcuXKlU9E2BwcHcV50dHQ069ev54knnuhyVFSj0bB3716ALo0d7ZEmXSHn9fzzz3Pq1CkMBgN+fn49srDrdDpOnjzJzz//jLe3Nw8//HCnxyWaSuMChwsXLhAYGEhVVRXQ/b2vAlKplFtvvZUxY8bwxx9/sGbNGoYOHcqMGTO6fWMgeNJZWVlAw2e8fft2MjIy8Pb2ZunSpdc19/dXLxyDhk1cXV1ds5m11yJ8vvfccw/vvvsuR44c4dSpUzzwwANMnz691eeWlZWh1+s77KX97W9/Iycnh/3793f7JtrR0ZHw8HCOHj3azOuDhja+rKysHq9JuRmYMWMGJ06c4ODBg8yePbtL1fUeHh6Ul5e3KO6jUChQq9WdTg15e3uzePFiNm7cyMyZM7GxsRGjP8JPY2ESg8GAnZ2dyeHu9jxpUzAajfz000+cOHGClStX4uXlRXx8PPn5+cTHx9OvX78OrU/29vZYWFjw7rvvolQqWbNmTbdck4cOHaKiooLAwMAuSUT3WELYw8OD+++/n/r6enr16sXcuXO7dWHX6XTs37+f5557jvT0dFatWsXixYt73EBDg5EuLCzkX//6F1FRUbz00kscOnSoSdN+TyGTyZg4cSKvvPIKHh4erF69ms8//7zJjdBVBE9amKf67rvvcunSJezs7Fi3bt11FxQRNj5CtOKvSF5enpiPNgV/f3+2bdvGsmXLsLKy4sMPPxR1zFuivLwcCwuLTlVsP/jggxw5cqRTs4/b49577+Wnn35qpuEMDdcX8F/vSUNDYWhwcDDV1dUcPny4y8e75ZZbOHPmTLPf6/V6qquru7TWuru7c/vtt7N7926KiooYMmQI4eHhBAQE4OLiIo7XdXBwwMnJqdWNY0cLx0yhvLycjRs3UlRUxEsvvSQO4xDmXBcUFIjOhSkYjUZOnDjBJ598wsCBA5k+fbo4oa4r6HQ6seV41qxZXfo+erR3Zvjw4Tg4OKDVajtd2XYtOp2Ow4cPs2TJEsrLy9m2bRsLFizosQrolrCwsEAikTB79mwWLlzISy+9xKRJk5BKpc0Ug3oKuVzOpEmTePXVV3F0dGT58uUcP368W8KWVlZW2NvbU19fz4cffsivv/6KQqFgzZo1NyR/6O7ujkQiITc3t8XF/mbHaDRSXFwsVqWaikQiYdy4cbzzzjvMmjWL/Px81q9fz8aNG0UDBw35woKCAvR6faeiKoJi3Ouvv95ssEBXsba2ZuDAgc367rVaLQUFBUgkkm6X47xZmTlzJgB79+7tVDi6MZMnT+aXX35pdr+r1WqkUmmno07V1dViO9z69es5dOhQs2pyU2kr3N1RT7qmpoavvvqKNWvW8Le//Y2FCxc2MfRSqZTg4GAUCgVZWVkmGdmysjK2bdtGREQEL7/8MgsWLMDe3p7c3FwuX77cpW6So0ePUlRURO/evTvVG92YHjXS7u7ueHt7U1NTI7YodRaDwcDRo0d5/vnnycvLY8uWLTzwwAM3RCaysrISZ2fnJgtiYGAgEolEzOVcL+RyOVOnTmXr1q3ExMSwZs0ak3pK28PCwoLk5GS++uorJBIJS5cu7fD0lu7CwsICDw8PdDpdt7y3601VVRVyubzVwfbtYWFhwbx583j77bcZPnw458+f58knn+STTz6htraWgoICNBqNyXrLLeHr68utt97KZ5991qnnt8XkyZM5ePBgk9/FxcWh1+vx8fHpUujzr8Qtt9yCh4cHBQUFnD59ukvHcnBwoF+/fs2O4+DggEQiIS0trcMbLp1OR3R0NDqdjn79+hEaGtrpimlo2Uh3JtxdX1/PmjVrsLOz49VXX21V+1omk+Hh4UF9fX2bwkdGo5Hjx4+zZs0aJk2axLPPPou1tTUKhYLQ0FDc3NxETfXU1NQOb6gMBgPfffcdAPfdd1+XI8g9PgdS2EV09qI0Go2cPHmSJUuWkJqaysaNG5k3b94N0/iG/+RqG+vDCkUGQsXq9cbGxob/+7//Y8GCBbz55pt8+OGHXQqBL1y4EGtrazw8PHjsscfaHbXX0wiKPykpKTf0PDpDWVkZNTU1Xa7K9/Dw4MUXX2Tjxo24u7vz3Xff8fjjj7Nv3z5UKpVJA27aYvr06cTGxnb7RtPb25snn3yyye+EsP31LEC80UilUmbMmAHADz/80OWo1z333MOePXuaHMfa2ho/Pz/Ky8uJi4vr0GtkZ2ej1Wrx9/cX1zM7O7tO51PbasHqSLhbqVSyc+dOpk6d2q4qpCBP3FpEs76+nldffZWIiAi2bdvGsGHDmvxdJpOJGxQLCwtxDGhhYaHJn+WpU6fIycnBzc2ty5Oz4DoYaeEkDx482KKaUGsYjUbOnDnD0qVLiY2NZd26dTz88MPd3n7UGdoy0rm5uTfknAT69u3L9u3b8fLyYvny5Zw4caJTi4GLiwvjx49n69at/O1vf+uBM+0Ygp5vWxOFbkaMRiP5+fnIZLJuU/gKDw/nzTff5JFHHqGsrIyPPvqIH374oUVZzI4gkUiYM2cOn3/+ebecZ2OuLWiLiIgA/reMNMBtt92GjY0NCQkJrdYXmIqzszP9+vXjt99+a/J7T09PXF1dKS0tNXnNNRgMZGRkYGVl1W01Am3lpDsaPTHVGxWKelvyfisrK9mwYQP9+/fn2WefFaOwRqORoqIi4uPjuXr1KlevXhU7D9zd3amoqCAqKoqkpKR2X99oNIptqn//+9+7pbOox410QEAAo0aNor6+ni+//LLdxxuNRiIiIli+fDmXLl1i5cqVPPbYYz0i5NEZampqKCkpQaFQNCkC8vf3Ry6Xi8PIbyQSiYQpU6awdetWoqOjWbt2bYfCxEajkQ0bNnQ5RdGdCEY6MTHxBp9JxxCqut3d3bt1sIVQk7Bo0SL69+/PlStXePbZZ7v8+QwaNIjS0tJ2ZyB3hczMTNLS0sThEv9LqFQq7rvvPgD+/e9/d9mbnjt3Lj///HMTYyyRSES5Y1Odhrq6OgwGA/b29t0mMNVWdXdPFdgKIijXGunMzExeeukl7r77bu68807x9zqdjkuXLpGWlkZeXh75+fnk5+eTkZEhjn2Fhs+ntra23e8rIiKC1NRUHB0dmThxYre8px430tAwJUkqlXLo0KE2K0hTUlJYt24dx44dY9myZSxatOi6iuGbgjDpys/Pr8nFLKjlGI3GVnsYrzc2NjY8+eSTzJs3jzfffJOPP/64ya62NYSNhoODQ5dDqN1F//79USqVxMbG3vBoRUcoKirqVGtUe2i1Wq5cuYJarebll1/m4YcfprCwkGXLlnH27NlOL/4SiYR58+bx6aefduv5Nubbb78FGrzK6yEre7Mxbdo0nJycSE1N5cSJE106loWFBQ899BBvvfVWk+/cysoKOzs7SkpK0Gg07R6nO1qjrqU7PWlTaalg7NSpU7zyyis88cQTzYq4MjIyqKysRK1WM3ToUEaNGsXIkSMZPHgwvr6++Pv74+/vz8CBA8UC1rYQvOgZM2Z023u8Lkbay8uLyZMnYzAYWL9+vbg7ESgqKuK1117jo48+4sEHH2TJkiVdbiTvKY4ePQrAuHHjmv1tzJgxAJw8efK6nlN7BAYGsm3bNtzd3VmxYgXR0dGtPtZoNIpFD6NHj+7x4RmmYm1tLX6+v/766w0+G9OpqqpCKpV261hKYQh9bW0tfn5+ODk5cc899/D000+TkZHBN998w+7duztdQRwYGIjBYOiRIr3Y2FiOHTuGVCrlnnvu6fbj/xVQKpU88MADAHz22Wdd7lgYNGgQfn5+fP31101+7+zsLMpomoIgvdlddFfhWEeorq7GaDRibW1NSUkJr732GkePHmXLli3N2nO1Wi3Z2dlYWVkRFBSEWq1GoVCgVCqxsbHBxcUFb29vfHx88Pb2btcmnT17ltjYWKytrUX56+7guq3ADz30EP369aOwsJAXXniBn376iT/++IPXXnuNrVu3Mm7cODZu3Njto/u6k8rKSs6fPy+qgF3LsGHD0Gq1YqHBzYRUKuWOO+5gzZo17Nmzh927d7foVR84cIBTp05haWnJXXfddQPOtHWmTp2Kj48PR44cMck7uNEYjUaqqqqwtLTsts1ORUUFFy9epLS0FFdXV7EuIjExkQ8++AAHBwcOHTrEgQMHeO211zpdPHjHHXc0q8juKqWlpezYsQOj0cg999zzXy8H2haTJk3C09OT3NzcZjnlzjB37lxycnL44YcfxN9JpVKkUqlJ7UgSiYTa2tpu1cfviT7p9igtLUWn03H8+HE2bNjA6NGjWbVqVYtdQPX19RgMBhwdHbt8f1ZXV/P2228DMGfOnG4dBXvdjLSVlRUbN26kf//+FBcX8+677/Lhhx+Snp7Ozp07GTJkyE03weZaTpw4QVpaGrW1tc08o5KSEjZu3EhGRgbFxcU90srSHTg7O7Nu3Tr69OnDihUrOHnyJGVlZWRlZbF7927eeecdAJ555hmxUvJmISgoCJVKRXl5OUeOHLnRp9MuwkzkrhY7Go1GKisrSUpKIjIyEo1Gg7+/v6isFBkZyapVq7C3t2fChAl89tlnBAYG8scff7BixYpO9e4PHTq0W5XA8vLyWL58OUVFRQQFBfGPf/yj2479V0QmkzF37lwAvvzyy24p+nvmmWe4cuUKhw4dEn9nqtEVjFRX+7cb09EBG13FaDRy7Ngx3n77baytrdm5cye33HJLq3alO6VwP/nkE0pKSggKCup25b7rGsu0tLRky5YtLFu2DBsbG7KysggODr5pQqptUVtby5dffklxcTE1NTW8++674pccExPD4sWLiYuLIzAwEKlUyu+//25SNeCNQCKRcPvtt7NmzRoWLVrE/PnzWbRoEfv370cqlTJ37lwxtHwzIZFIxBDp119/bVJ+/UZSVVWFXq/vsEi/RqOhtLSUnJwckpOTuXDhAhEREWRnZ2NpaUl4eDje3t5IJBLRY6irq6Nv376sWLGCgQMHsnTpUjw9PUlNTeX555/vcOuaTCbrkt6wgNFoZP/+/SxevJi8vDz69OnDmjVrurWI7q/KmDFj8Pf3p6SkhJ9//rnLx5PL5WJHx7Fjx0SDaEqFsXCNduc42OsZ7s7MzGT16tWcO3eOJUuWcN9997XrrQujTbv6nmNiYjhw4AByuZxnnnmm2+3ZdbeOCoWCcePG4e/vj5WVFQMHDrzep9ApvvnmG8rKypg0aRJubm78+uuvXLp0icrKSrZs2UJZWRlhYWF88sknPPbYYwD861//6pHBBd2Fk5MTffv2JTc3F1tbW0aPHs0bb7zB/ffff6NPrVVGjRpF3759KSkp4ccff7zRp9MmQi7QVMEdnU5HWloaZ86cITo6mtTUVLKysqivr8fd3Z2BAwcydOhQbGxsMBqNfP755+zYsQOdTsfdd9/Nc889Jy5MHh4e7Ny5kwEDBlBSUsKKFSs4f/58j73XlkhJSWHZsmXs3r2bmpoahg8fztatW2+KNsqbAYlEwvz58wH46quvOtSi2hpKpZLVq1fz22+/cfjwYZPrIeRyOZaWlt2qj99dfdLtceTIEd5++21uvfVW7rvvPpNnsisUCmxtbSkrK+t0XUB9fT1vvfUW0CBc0hOy1DfMhRV2Ut0ZXukpcnNzRYOwcuVKZs2aBTQMBf/888+pqqoiLCyMjRs3Ymdnx/3334+NjQ0xMTHs37//Bp5520gkEgYMGIC7uzuPP/44L7zwwnXRPu8KEomEhx9+GIDvv/9enON9M1JeXi7O/zWFnJwc0tLSsLW1xd/fn6CgIIYMGcKIESMICgrC3t4eiURCXV0d27ZtE9XgHnnkERYuXNgsrGdjY8OmTZsYP348dXV1bNq0iX//+989Kq1qNBo5f/48a9asYfHixcTHx+Po6MjKlStZvXp1t+bq/hsYMmQIt9xyC7W1tXz00UfdckwLCwtWrVrFiRMniIuLM7lX19ramrq6uhaVyg4fPszZs2eJiYkhLS2NoqKiNluShIK1iooKNBqN+DitVktZWRl5eXmUlZVRV1eH0Wikvr6e7OxsIiMjOXjwYIf0EMaOHcvGjRtRq9WipLGpODk5YTAYOr1B+vrrr8nOzsbb21tsretubljMKTw8nISEBC5fvnzD1azaor6+nldeeQWdTsfEiRNFIfcvvviCo0ePIpPJkMlkPPbYY+LNoFareeKJJ9ixYwfvvfce3t7eXZqC0pMIu+y/kiZ2SEgIt9xyC+fOnePDDz9kyZIlN/qUmqHX6ykrKxPlBk2htLQUmUxGWFhYqwtrUVERmzZtQqfToVarWb58eZuCIAqFgiVLluDl5cUXX3zBt99+y6VLl3j++eebiPF0lZKSEn777Td+++03iouLqa+vR6VScccdd9ww+d6/Co899hiRkZEcO3aMKVOmEBIS0uVjVlZWMnfuXPbu3Ut0dLRJ64+9vT2FhYUUFRU1q0eRSqWkpKRQVVVFdXW1+G9jQ33tJtHe3l6coKXRaLCwsKC+vh69Xs+ZM2eIioqirq4OjUaDXC7HxcUFV1dXXFxcUKvVor57Y4nPfv36NQuVK5VKkpOT0ev1eHl5dai2ydXVldTUVHJzczvcUZSamsr3338v1gP0VDHcDTPS/fr1o7KykkOHDnH33XfflCL7RqORt956i/j4eFxcXEQPztnZGX9/f06cOIGNjQ0zZswQxQMExo0bR0pKCt9//z3btm0Tp1bdTBiNRjIzM+nTp89N70Ffy8KFC4mMjOTo0aOMGDHiptvoVVRUIJFIcHJyMunxRqMRrVaLra1tqwY6Pj6ezZs3U1ZWhru7Ozt27MDb27vdYwvDYMLCwnjllVdISkpi8eLFLFy4kDvuuKPTObSioiLOnTsnLrhCkdLAgQMZMmQIt99+e4+Nbv1vws3Njfvuu4/PP/+c3bt38/rrr3cpZy+oh1lYWLBmzRq2bNnC2rVr2+3Vd3Z2JikpieLi4mZr1W233dapc0lKSqK8vLyJkXZychK7fVqitraW1NRU4uPjMRgMSCQS1Go1VVVVxMTEMGjQoCbXbFVVFdnZ2VhbW3fYjqhUKpycnCgqKmpx9Gdr6PV63nzzTfR6PdOnT2/1vXQHNyzcHRQUxPjx46mvr+fNN9+8KT25PXv2cPToUVQqlSjwLuDp6UllZSUajYahQ4e2+Pz58+czbNgwUY7uRul6t8apU6dITU0lPz8fX1/fG306HcLT05OHHnoIgH/+8583Xdi7pKQEnU5nslJeTU1Nm4tEYmIiL774olj78Oqrr5pkoBsTHBzMG2+8wcSJE6mvr2f37t0sWrSIX3/91aQivLq6OuLj4/nqq6949tlneeihh9i9ezeXLl0CYOTIkeKUrpkzZ5oNdAe455578PDwICMjg3379nXpWIWFhWi1Wnr16oWbmxuLFi1i586d7aYWlUolzs7OYnFsd3BtXlrYyLW1MSwuLiYnJwdra2v69u3LqFGjGDx4MJ6enuj1+iahcI1GIyoj9u3bt9XjGo3GVkPzHh4eWFlZNdPvaIuffvqJxMREnJ2dmTdvnsnP6ww3tMTy4Ycf5tKlS0RHR/P222/z9NNP3zRtWD/++CMff/wxAM8//7woSyng6upKVVUV1tbWDBgwoMVjSKVSli5dyooVK0hLS+P5558X259uNJWVlbz//vsAzJs37y9ZbTtt2jTOnj1LZGQku3btYu3atTdNp0BZWRlyudzkfLQwK7slw5aTkyNWcI8bN47nnnuu09+XWq3mueeeY9iwYXz00Ufk5OTwz3/+k/fff5/+/fsTGBgoVr0K+e/09HTS09ObLWIqlYrBgwczfPhwhg4dai4I6wJKpZLHH3+c9evX88UXXzBu3DiTozDXUl1dTXV1tegN9+/fn9DQUPbt2ycO+GgNNzc3CgsLyc7Opm/fvp16/ca01CsNbbc/FRUVIZfLCQkJaRJC9vf3JyoqiqysLPHeSkpKora2Fn9//xYL5AwGA3l5eeTm5qLVanF0dMTPz6/JcYWNdG5uLj4+Pu3eW9nZ2WKL7VNPPdXjdRY3dEVzcHBg7dq1KJVKDh8+LMoF3kiMRiMffPAB//rXvwB45JFHGDlyZLPHVVRUiPN72/KWrKys2LZtG2FhYZSVlfHCCy9c9yrba6mvr2fz5s0UFxcTFBTElClTbuj5dBaJRMLixYuxsbHh4sWLfPjhhzf6lICG3b0gBWrqprOsrAyj0djM0JWWlrJ27VrKy8sZPHhwlwx0Y8aMGcN7773HsmXL6NevH87OzkRFRfHtt9/y2Wef8emnn/Lvf/+bb775hrNnz5KXl4dcLsfX15cpU6awdu1avvjiC1atWsVtt91mNtDdgFAkWFdXxwcffNDp40gkEqytrZvI586aNYvIyMh2vUVHR0fxud1R6X2tJ23K/eDi4oKlpWUzQSiZTEb//v2xsLAgLS2NxMREamtrCQgIaDGqpNfriYuLIzExkZqaGhQKBbm5ucTHxzfZJEgkEjw8PNDr9e1GO6uqqti0aRP19fWMHz++1bGZ3ckNd58CAwNZvnw5W7Zs4dNPP0Umk3HPPffcEI+6pqaGN998k5MnTyKXy3n22We59dZbW3yscAGbsmCq1Wo2bNjAm2++ye+//86mTZu48847mT9/PlZWVt36HtrDaDSya9cuYmNjcXJyYuXKlTeN99kZnJ2dWbVqFWvWrGHv3r14eno2EdC/3hiNRpKTk6mtrTU5haDVaiksLMTR0bHJrry6upp169aRn59P3759WblyZbdGPGQyGePGjWPcuHGUl5dz5coV0tLS0Ov1YnhQLpfj7e2Nr68vnp6ef8mIy1+JRx99lMjISE6ePMno0aM7pVfg7e1NSUkJGRkZODk5YWtri0KhYNasWWKKIz8/H4PBgJ+fX5NqaIlEQkBAAFFRUaSkpBAaGtrq61RXV5OZmUl9fT22tra4u7s30wS4tldaWNfb8qRdXV1JSUkhJyen2UQuS0tLhg4dSlpaGgqFQtxUXIterycmJoaysjKcnJzo168fMpmM2NhYioqKyM/Pb5K/dnNzIzU1lZycHDw8PFq0Pzqdju3bt5OdnY2vry//93//1+p76E5uitV5+PDhLFq0CIlEwscff8yHH3543VuzLl68yJNPPsnJkyexsrJi/fr1rRpoaPCkwfQRaoLR/8c//oFUKuWXX37hySefvK5etcFg4J133uHEiRNYWlqyfv36TofUbiZCQkJ46qmnAHj33Xc7Pbu8O8jOzhYNrqmKXbm5uRgMhiaPNxqNvPzyy6SmpuLp6cm6des6LIrSEezs7Bg1ahRz5sxh3rx5zJ8/nwULFvCPf/yDcePG0bt3b7OBvg64urqKBapvv/12p1qDhIgHNLQBCgQHB2NhYcH3339PfX09lZWVREdHk5KS0sRo2tvb4+zsTElJiTiW91oyMjK4ePEi+fn5VFRUkJ6ezoULF5rlslvzpNsy0gqFAjs7O/R6fYu1SjKZjICAAHr37t2igTYajSQkJFBWVoabmxvBwcHI5XIkEokoNpWfn9/kHBQKBa6urmLlekt88MEHREZGYmdnx5o1a65bO+FNYaShQZd5+fLl2Nvbc/jwYdavXy8awp6koqKCXbt2sX79eoqKiujbty87d+5sU2SlurqauLg4JBIJSqXSZB1pocp2165d9O3bl6KiIjZu3Mj69euJjo7uUeGTqqoqXnrpJfbv349cLmflypV/uWKxtrjtttu4//77MRgMbNu2jWPHjl33cygoKCA1NRV7e3tRsrM9dDodWVlZKJXKJi0gP/30ExEREdjY2Ij992b+N7jjjjsYPHgwlZWVfPjhh51aF4T8rFDrAA3XWkhICKdPnyYkJIQhQ4ZgZWVFZmYmcXFxTRyjvn37YmFhQUpKSrOwc3Z2NmlpaVhaWhIWFsbIkSPFcPG1uedrc9KmGGnh7437qztCVlYWBQUFODo6EhQU1CRSqFAocHd3p6ioiOTkZLKzs8nJySEvLw+FQiG2Tl7LL7/8wi+//IJcLufFF1+8rgOgbqqt8ZgxY3BycmLLli1ERkby+OOPM3v2bKZNm9btu/ji4mJ++OEHfv31VzQaDQqFgn/84x/MmDGj3eb/s2fPotfr6d27NzKZjPPnz3coLOXr68vOnTvZt28fn332GRcvXuTixYv4+/szc+ZMRo8e3W09d5WVlRw5coRvv/0WKysr1Go1q1evbjOM9VdF0IP++uuvefXVV9FoNNct315dXU18fDwymYzAwECTv7+srCy0Wi19+vQRr7vU1FSxaHHx4sX/04Mo/hcR+m63bt3KH3/8gZ+fH/fee2+HjiFMc2rs2ebk5IhCOcnJyYSEhBAeHk5cXByFhYXU19czYMAA8bkhISFERkYSGxuLu7s7Hh4e4qxxOzs7+vfvj0qlAv4jTnWtUW1JGrSlxzWmpqaGuro6XF1dO7wOlpaWkpqaiqWlZasbZXd3d2pra8nMzEQul4sV5waDAZVK1SyKGxkZyXvvvQc0zDToyXarlripjDQ0VCLu2rWLXbt2ERUVxQcffMAvv/zC3LlzGTFiRJc0X/V6PVeuXOHYsWMcPXpUDKUMGTKERx991KTZybW1tWKB29SpU4mIiOCPP/7ocO5IKpVy9913M2HCBA4cOMC+fftITk5m6dKl1NfXc//99zNs2DCGDh2Ko6Njh45dVVXF6dOnOXnyJJGRkeJF2LdvXx5//PGbrl+7u5BIJMydOxcLCws++eQT3nrrLbKysliwYEGPh2qzsrIwGAyEhISYHAarr68nKysLCwsL8Tupr6/n3XffRafTMXXqVIYPH96Tp23mJsXJyYnZs2ezceNG/v3vfxMUFNRhkROpVCoaQ71eL0Zs5s+fzxdffEFISAgymYzg4GASExOpqKggMjKSsLAwVCoVarWagQMHkpiYSF5eHqWlpWg0GtEACgbaYDCQm5uLUqlsVkR7rZEWvNq2jLSgRHZtR0171NfXExcXh1QqJTg4uFUDb2NjQ1BQkDjWUngPGo0GjUbTZL3Nyspi27ZtGAwGZs2axYQJEzp0Tt3BTWekoaEYaNOmTVy4cIEPP/yQrKwsduzYgYWFBcOGDWP06NGEhYW1295iMBjIz88nNTWVc+fO8d1336HRaHBxcUEulzNmzBjuu+8+k8djGo1G3njjDbKysvD29ubxxx/niSee4MKFCyQmJnaqZcHW1pb777+fadOmsXLlSq5cuYJKpeL06dOcOXMGaMhTeXp6ij/X3gh1dXVkZWWJP3l5eeLFJ5PJGDJkCNOmTWPo0KE3TYtbT/L3v/8dtVrNu+++y48//kh8fDwrVqzosfy7TqejoKAABwcHk/uioSGvp9frm/R3fvTRR1y9epVBgwaxcOHCHjlfM38Nhg0bxr333sv333/P5s2b2bJlCwEBASY/XyKRiOtAcXExWq0WPz8/evfuTW1tLeXl5djZ2SGVSgkMDCQtLY2MjAwuXbpEaGgoarUaa2trBg0aRGFhIRqNBoPBQK9evZpEG4uLizEYDHh7ezcrQhU2rB3JSctkMpRKZYfqkoQ8tFarJSgoqN0efZVKJW4yWqOyspKNGzdSXV3NyJEjxall15ub0khDw5c5bNgwBg8ezOHDhzl06BCJiYmcOHGCEydOAA09pZ6ennh4eKBUKjEYDOh0OnQ6Hbm5ueJwAmj4EtPT05FKpahUKh577DHmzJljsodVUFDARx99xMmTJ7GwsGD16tV4enoyZcoUfv31VzZv3syrr77aKUMQHx/Prl27yMrKYtCgQSxYsAALCwvOnz9PVFQUBQUFFBQUEBkZadLxpFIpAwcOZMyYMYwaNcrkXt3/JqZOnYqvry/bt28nLi6OxYsX89hjjzF27Nhu36iUlZVhMBg6ZKBramrIzc1FrVaL+a0LFy7w888/I5fLefDBB9tdRMz89zNv3jxyc3M5deoUa9asYdu2bSarA6pUKjGKJowrFYoT+/fvT0JCAsOGDQMa1ls/Pz9UKpU4EjU4OBgHBwckEkmbOdiCggJ0Ol2Lj+lMuNvBwYH6+npKSkpMjvrl5ORQV1eHs7Nzt6SHdDod27ZtIzc3F39/f5YsWXLDHJyb1kgLyGQy7rjjDu644w4KCgr4888/OX36NKmpqVRVVZGQkEBCQkKrz3dycqJ3794MGDCAhx56iOPHj5OSksK3337LH3/8wYQJE/Dz88PX1xd3d3ekUikSiQStVktxcbEo+v7LL7+g1WpRKBQ899xzYmj88ccfJzMzkytXrrBkyRKefvppk2ZjNw69//bbbxiNRnr16sVzzz1HYGAg0FBAotPpyM/PJycnR/wRJCeh4eaSyWR4enri7e2Nt7c3Hh4ePaYj+1eif//+vP766+zcuZPIyEh27NjBwYMHWbRoUbfqVpeWlgKYbKT1ej1JSUno9XoCAgKQSCSUlpaya9cuAObOndshj8nMfy8ymYxly5axefNmLl68KBpqU4yXTqcTZ5qXlJRgbW0terZBQUHEx8eLRlrA09MTlUpFXFwcly9fJiAgAE9PzzbXs/LyctRqdYvdB8JGUyiuNcXQdTQ1VVpaSkpKCgqFgsDAwC4bU4PBwFtvvUV0dDQODg6sWbOmRzsr2uOmN9KNcXV1ZebMmcycOROj0UhZWZlYmafT6cRhF3K5HGdnZ3r37t1MZvGee+7h9OnTfPbZZ2RmZvL11183ex0hTCRo2ZaWluLn58ett97K/Pnzm+wYhUrprVu3Ehsby4YNG/Dx8WHUqFH06dNH1Ms1GAwUFxeTm5tLRkYG586dE9sjJBIJf//733nggQea5dzlcjleXl4m5cvNNMfOzo6NGzfy22+/8dFHHxEdHc3TTz/N5MmTmTlzZrdoxpeWlqJUKk3W/U1LSxOvKQcHBzQaDZs3b6a8vJzQ0FBmzpzZ5XMy89+DXC5n1apVrF+/nsuXL7N69Wq2b9/eboufRCLBYDBQWloqrmcCffr04ddff23xeU5OTgwaNIiYmBiSkpKorq4mICCgxYJao9HY5rUvGOmOVHcL0c/26o+MRiP5+fkkJiYikUjo379/l50Tg8HArl27OHr0qDj2sz3N857mL2WkGyORSMQcYGuynK09b9SoUYwYMYKzZ8+SkJBAWloaaWlpFBcXiyIOMpkMS0tLioqKUCgU4sLeEnZ2dmzdupUff/yRH3/8kfT0dGJjY9HpdFhZWSGTyVoUDPH09GTMmDGMHz++wzrMZkxHIpFw++23M2LECD755BMOHjzI/v37OXDgAGPHjmXmzJmiR9tRtFottbW1uLi4mNxyVVpaip2dHd7e3hgMBnbu3ElCQgKurq4sX778Ly0uY6ZnUCqVrFmzhjVr1hAfH8+LL77Itm3b2ozeyOVydDodhYWFGAyGJqk4GxubNhXFrK2tGTx4MLGxsZSWlhIVFcWAAQNaTMHU1ta22hEjeKCCJy1c223lm4U+5ba816qqKlJTUykpKUGhUBAaGtosrWc0GtHr9UilUpPuKZ1Ox2uvvcbx48exsLBg3bp1BAUFtfu8nuYva6S7ilQqZeTIkc0kP41GIwaDQQx7v/HGGxw+fLhdiTyZTMa9997LXXfdxfnz59mxYwcxMTGEh4fj5uaGRCLB0dERDw8P3N3dCQsLw9fX93+ikOtmwcbGhqeeeoq77rqLPXv2cOzYMY4fP87x48fp3bs3EyZMYPjw4bi5uZncRSAUxJiqHJeVlUV1dTV9+vRBKpXywQcfcObMGdRqNevXr+/QLFwz/1tYWlqyYcMGVq1aRUpKCsuXL2f9+vWtRtmUSiVGo5GioiIsLS2beLsKhYKxY8e2+XpKpZKwsDBSUlLIzs4mIiKCkJCQJsZQIpFgb29PeXk5lZWVzQzlteFuoX+7scjKtZSUlLQ6QU6oLcrIyEClUuHq6oq/v3+TzYNeryc6OhqDwUBVVRUymQxnZ2e8vb1b9fh1Oh07duzg1KlT4ufcv3//Nj+f68X/rJFuDSHHKxAcHMzhw4dJTEw06fkKhYJRo0YRHh6OTqfj+eefN7fR3GT07t1bVH/bu3cvv//+O+Xl5XzyySd88sknQMMu3s7OTryphc2UIHggUFdXR2FhITY2Nri5ueHg4ICrqyvjx49vJhaj0WgoKCjA1tYWNzc3Pv/8c/bu3YtcLmf16tXmaIqZdlGr1aIAUlJSEsuWLWPNmjUtGhTh2hWGbTR2CCQSCdOnT2/39aRSKX369MHa2prExEQuX77MwIEDmxg7Hx8foqKiSE1NbTa3+lpPWjC8QiHbtQj62TY2Ni1ufFNTU8nMzEStVhMYGNjiUI3s7GwqKiqwtbUVVcTy8vIoLi4mPDy82XHr6+v55z//yalTp0QJ55vBgxYwG+l2EJSeOjq6TVjIzVKKNy8uLi488sgjPPjgg0RFRfHHH38QHR1NeXk5dXV1LY5vVCqVYs5MoLq6muzsbBISEsRq2s8++wxvb29uvfVWxo8fj4+PDxkZGdTW1iKXy9m2bRtnz54FGgQS/hvFZcz0DHZ2drz00kts376dCxcu8OKLL/L88883m6nu7u5OYmIi9vb2Xa54dnd3RyaTERcXR3R0NOHh4aIBtrW1bbXl6dqctJBHb81Il5eXo9frW+2SEca5Dho0qNW1VYh6BgcHixXuUVFRaLXaZrnw6upqNm/eTExMDEFBQTzxxBM3xZTCxpgtSDsI1ZAdNdKCUIq5yvrmRy6XM2TIEHGijdFopKamhvLycmpra8UbW6hXaNx/KvyuoqKCoqIiiouLSUpKIjU1lcTEROLj43nvvffw8PDAxsYGnU4nhvr69evHnDlzCA8PvzFv3MxfFgsLC1588UXeeecdfv31V7Zt28YjjzzCXXfdJT5GoVAQHh6Ora1tuyqKBoOBmpoaLC0tW32si4sLOp2OhIQEsrOzxQ4EvV5PTU1Ni/lqYUa14L26urpib2/fquSzXq9vs4dZq9VSV1fXZo5ZrVZjZWWFRqNBqVSSlJQketaNhYbKyspYt24dKSkpODo68swzz5jc3nY9MRvpdhAquRMSErh69SpqtVoMeRoMBvR6vSgEL+RA8vLyiIiIQC6X39DSfTOdQyKRoFarTa7Wbom6ujpOnjzJ77//TmRkJPn5+RQXF6NQKHBwcOC2225jzpw5/5M97Ga6B5lMxv/93//h4uLCp59+yvvvv09BQQELFy4UQ9umtAVqNBqioqKora1FIpHg7u6Or69vi3UZ7u7u5OTkUFhYKBrp/Px8VCpVi50ScrlcLL6FhmLZsrIyrl692uK5CMpfrVV/Ozk5UVlZSXZ2dqvpIUEOtaysjIyMDIqLi7GzsyMkJEQ07rm5uaxbt47c3Fw8PT3ZtGnTddXj7ghmI90OwmxTg8HA0qVLTSr0MhqNODo6MnDgwG4ZnG7mr4eFhQWTJk1i0qRJ6HQ6EhMTqaqqQiqVMmDAAPPmzUy3IJFImDVrFi4uLrzxxhvs3buXvLw8nn322XZVtwQEnQkXFxfq6urIy8ujrKwMb29v3NzcmnitLbVQFRUVUVdX16KRFp4rpIG8vLywsLCgqKhIVDxrjHDOSUlJVFVViZtla2trpFIpvXr1Ijc3l/T0dBwcHFp8j4Ied2ZmJgqFAhcXF4KCgsQIQUREBC+//DLV1dX4+/vf9ANszEa6HSQSCS+//DLnz5/n9OnT1NTUoNVqkcvlYl+2VCoV/9vS0hJnZ2f8/PxMKsww89+PXC6/aSpFzfx3MmHCBJycnNi6dStnz55l8eLFrFixQhRGag0hVaPT6fDw8MDDw4OamhrS0tJISEggNTUVFxcX3NzcsLKyorS0lKqqKlHf2mAwUFZWho2NTYs54muNtFQqJSAggCtXrnD16tVmRbVqtZrg4GCSkpLIzs5GpVKh0WiQy+V4eHjg5eVF3759uXLlCtHR0Xh5eYltrrW1tVRXV1NUVIRWq0Wv1+Pq6io6SkajkR9++IGPP/4Yo9HI8OHDWbJkicmdGTcKibEn5yOaMWPGjJnrRl5eHi+//DKJiYnIZDIeeugh7rrrrjYjgEVFRcTGxoriJ5aWlgQGBlJWVkZBQYHYZiiVSjEYDMhkMgYNGoS1tTVGo5Hjx4/j5OTU4gCQxMRElixZgp+fH2+88QYA33zzDZ9++ikTJkxgyZIlLZ6TwWCgrq6O6upqKisrKSwspK6uDolEIo7RTE9Pb9bKpVar0ev1YoFnnz59cHJyQqPR8MYbb3D8+HEAHnjgAR544IG/RAus2ZM2Y8aMmf8S3N3d2b59Ox9//DE//fQTH3zwAZcvX2bx4sWt1j84OzszcuRIKisrKS0tJTs7m5iYGIYMGYKPj49YFFlXV4der8fLy0sMM0skkiaFlNdSUlIC0KRae+zYsXz66aecOXOG+vr6FnPfUqkUKysrrKyscHFxwdfXl+LiYpKTk8nKysLPz4/Q0FBKS0vFeQ0WFhZYW1tjYWFBamoqGRkZKJVKCgoK2LJlCykpKVhYWLBkyZJm+hg3M2ZpIzNmzJj5L0KhUPDoo4+yatUq1Gq1GP6Oj49v8zmOjo4EBATQv39/9Ho9aWlpQEPLl6OjI6WlpVRUVBAbG0teXp743LYqwouLi4GmRtrDw4OAgABqa2uJiIgw6T1JpVJcXFwICwujvr6exMREUerU3d2dXr164ezsjIWFBbW1teTn54stY8899xwpKSl4eHjwyiuv/KUMNJiNtBkzZsz8VzJy5Ehef/11+vbtS2FhIStWrODTTz9t1ud/LS4uLri7u1NQUEBxcTEFBQUkJycDDYVfcrmc+Ph4URegrq4OrVbb4rFaMtKAqHYmTDQ0FSsrK3x9fdHr9WRnZzf7e2lpKZGRkdTU1LB//342bdpERUUFgwcP5tVXX70pW6zawxzuNmPGjJn/Utzc3Hj55Zf5+OOP2bt3L9988w0nTpzgySefZODAga0+z8fHh8LCQi5fvoxEIkGlUhEWFoatrS2enp7ExsaSm5srija1Fu7OyckBWjbSH3/8MWfPnqWurq5D3Q4eHh7ioCJ3d3exT7uwsJCSkhJOnTrFyZMnMRgMqFQq5syZw4wZM/6ymvjmwjEzZsyY+R8gLi6Ot956i4yMDJycnAgKCuLBBx9sdexlQUEBmZmZSKVSgoKCmlRBGwwG4uLixKFEjo6OzVTztFotc+fOpaamhpdeeomYmBji4uJQKBQUFhYSGxtLbW0tzz33HPfee2+H3ktRURF5eXlUVFTg5uZGVlYWubm5HDx4UAx1Dx06lEWLFt20/c+mYjbSZsyYMfM/gk6nY8+ePRw9epSsrCxkMhlTp05lxowZLUqHCsOGWsJgMBAbG0txcTGBgYHNjP25c+dYunSp2EMtmBpXV1cKCgooLS0lMTERGxsbVq1axdSpU02ak92YU6dOUVVVxf79+4mPj0cul+Pg4MBjjz3G6NGj/xLV2+1hNtJmzJgx8z9GUVERn3/+OUeOHBGN56BBg5gyZQojRowweeaA0WgkNzcXV1dX8TlGo5HIyEieffZZrl69Sq9evejduzcjR45kzJgxuLi4oNVqiYqK4rvvvqO2thY/Pz8yMzMZMmQId955J2FhYa1Kg0KDl3/48GEOHTokVpArlUomT57M3Llzu6QWeLNhNtJmzJgx8z9KWloae/bs4c8//xQLyuzs7Jg4cSJTpkxpdQxmS+h0Os6dO8ePP/5IXFwcXl5exMTE8NRTTzFt2rRWW8BSUlI4ePAghw8fFgvQZDIZfn5+BAUF4e7ujkQioaamhqysLGJjY5sM6PD29mbq1KlMmDDBZJW1vxJmI23GjBkz/+NUVVVx9OhRDh06JLZeQcMkqfDwcIKDg+nTp08zdS6tVktaWhrnzp1r4tXa2Nhw7733Mm3aNJOLwioqKjh8+DB//PEHaWlpLRajeXp6kpOTg5WVFUOHDmXq1KkMGDDgvyKs3RpmI23GjBkzZoCGUHVCQgIHDx7k+PHj4hxoaDC8SqUSa2trZDIZBoOBrKwsceIfQK9evZg6dSq33357k4lTHaWuro7ExESuXr1KeXk5RqMRpVJJQEAAPj4+9OrV67/aMDfGbKTNmDFjxkwzampqiIiIIDY2lqSkJFJSUpoYbWhQHPPy8qJfv37cdttt//Ve7Y3AbKTNmDFjxky76PV6ioqKqK2tRafTYTQaxQEXZnoOs5E2Y8aMGTNmblL+mhIsZsyYMWPGzP8AZiNtxowZM2bM3KSYjbQZM2bMmDFzk2I20mbMmDFjxsxNitlImzFjxowZMzcpZiNtxowZM2bM3KSYjbQZM2bMmDFzk2I20mbMmDFjxsxNitlImzFjxowZMzcpZiNtxowZM2bM3KSYjbQZM2bMmDFzk2I20mbMmDFjxsxNyv8DbKbd9aXs5OQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "import pickle\n", "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "sns.set(context=\"talk\",style='whitegrid')\n", "import pandas as pd\n", "import numpy as np\n", "np.random.seed(42)\n", "import tensorflow as tf\n", "\n", "import os\n", "\n", "from src.preprocess.dataset import *\n", "from src.models.model_selection import classifier\n", "\n", "import plotly\n", "import plotly.graph_objs as go\n", "\n", "import nilearn as nil\n", "from nilearn.masking import apply_mask, unmask\n", "from nilearn.plotting import plot_glass_brain, plot_epi, plot_matrix\n", "from nilearn import plotting\n", "%matplotlib inline\n", "\n", "## Load right ventro-anterior insula mask \n", "mask= nil.image.load_img('../../data/processed/masks/00b-Schaefer2018_300Parcels_17Networks_order_afniMNI152_2mm_GM.nii.gz')\n", "rvAI = np.zeros_like(mask.get_fdata())\n", "rvAI[np.logical_or(mask.get_fdata() == 230,mask.get_fdata() == 231)] = 1\n", "rvAI_img = nil.image.new_img_like(mask,rvAI)\n", "\n", "plot_glass_brain(rvAI_img)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Another GRU model with the same architecture, but slightly different hyperparameters, was trained using segments only from the right Insula instead of whole brain. Following are the results." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Search Grid With 5-fold Cross Validation\n", "\n", "The model was fine tuned by finding optimal values for the following hyperparmeters:1) `L2` regularization and 2) `dropout` rate applied to each of the hidden layers, and 3) `learning_rate` of the Adam optimizer.\n", "\n", "Optimal hyperparameters were found by doing a full grid-search over 20 combinations of hyperparameteres, and cross-validating each combination with a nested 5-fold cross-validation method. A total of 20 models were trained and validated. Following plot shows the performance of each model in terms of its training and validation accuracies. The models are shown in the descending order of their mean validation accuracy. The error bars indicate standard deviation across folds." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "with open(\"../../results/03-rAI/grid_search20.pkl\",\"rb\") as file:\n", " results, param_grid = pickle.load(file)" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABKcAAAFVCAYAAAA64ozIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABAO0lEQVR4nO3deZhcZZn38W+nk84KIUGWhCVE0BtBMRgERCRs4gAOOhA3lM0NBtwYRRwB2XVAfQGXGXBYAooKBBlXRIiyCAoaCcj2IAHZEvZA9q273z9Odeg01Z3q7qo+Xae+n+vK1V1nq/tOdVdX/eo5z2lqb29HkiRJkiRJysOQvAuQJEmSJElS4zKckiRJkiRJUm4MpyRJkiRJkpQbwylJkiRJkiTlxnBKkiRJkiRJuTGckiRJkiRJUm4MpyRJkiRJkpSboXneeUQMB84ADgPGAfcAJ6WUZlWw777AycBbyEK2h4DzUkpX165iSZIkSZIkVVPeI6dmAMcDPwI+D7QB10fEO3raKSLeC/yOLFw7FTgFaAWuiohP1LJgSZIkSZIkVU9Te3t7LnccETsDdwLHp5TOLy0bAdwHzEsp7dHDvtcDOwCvTymtKC0bDjwKPJJSmlbj8iVJkiRJklQFeZ7WNx1YBVzcsSCltDwiLgHOjogJKaX53ey7PrCgI5gq7bsiIhYAy/pa0OzZs1eTjSZb2NdjSJIkSZIkaS3rA21Tp04tm0PlGU7tCDyUUlrcZfldQBMwBegunLoF+M+IOJPs1ECAI4E3kp0m2FdDgKbm5uax/TiGJEmSJEmSSlpbW6GHqaXyDKcmAE+XWd4RSE3sYd+zga2Bk8gmRQdYDByUUrqxHzUtBMaOHDmyH4eQJEmSJElSh8WLF0MPZ6nlOSH6SGBFmeXLO63vzgrgYeAa4CPAx4C/AVdHxNurWaQkSZIkSZJqJ8+RU8uA4WWWj+i0vjvfBXYG3p5SagOIiKuB+4HzgXf2tajm5mYioq+7S5IkSZIkqZM5c+Z0nNpXVp4jp+aTndrXVceyeeV2iogW4JPArzqCKYCU0irgemDniMgzdJMkSZIkSVKF8gyn5gDbRsSYLst3KX29p5v9NiQb8dVcZt2w0rqmahQoSZIkSZKk2soznJpJFiZ9smNBRAwHjgJuTynNKy3bMiK27bTfc8DLwMERMazTvmOAfwXuK42ikiRJkiRJ0iCX2+lvKaU7I+Ia4NyImADMBY4AJgFHdtr0CmAapdFQKaXWiPgWcBbwp4j4Edkoqk8AmwNfGrAmJEmSJEmS1C95jpwCOBy4oPT1O2QjqQ5IKd3e004ppbOBjwKtwKnAmWSXJDw4pXRVTSuWJEmSJElS1TS1t7fnXcOgMXv27Jebm5vHTpkyJe9SJEmSJEmSCqF0tb5Xpk6dukG59XmPnJIkSZIkSVIDM5ySJEmSJElSbgynJEmSJEmSlJvcrtYnSZIkSZKk3jn11FO5//77y6577LHHmDx5ctl122+/PaeffnotS+szwylJkiRJkqQ60VPANH36dGbOnDmA1VSHp/VJkiRJkiQpN4ZTkiRJkiRJyo3hlCRJkiRJknLjnFOSJEmSJEmD1JJlK3l83oKKt31g7rPr3G7SxHGMHtnS39KqxnBKkiRJkiRpkHp83gLOuuimqm578tH7st3Wm/S3tKrxtD5JkiRJkiTlxnBKkiRJkiRJuTGckiRJkiRJUm6cc0qSJEmSJBXGqaeeyv3331923WOPPcbkyZPLrtt+++05/fTTa1laVTwy+xcsfmle2XXLFr3AnBsvLLtuzPiJbDP1oFqW1meGU5IkSZIkqTB6CpimT5/OzJkzB7Ca6husAVN/eFqfJEmSJEmScuPIKUmSJEmSVLeWLFvJ4/MWVLztA3OfXed2kyaOY/TIlv6WpgoZTkmSJEmSpLr1+LwFnHXRTVXd9uSj92W7rTfpb2mqkOGUJEmSJEkqjCJOGF50hlOSJEmSJKkwDJjqjxOiS5IkSZIkKTeOnJIkSZIkqYGceuqp3H///WXXPfbYY0yePLnsuu23357TTz+9lqWpQRlOSZIkSZLUQHoKmKZPn87MmTMHsBrJ0/okSZIkSZKUI8MpSZIkSZIk5cbT+iRJkiRJKrAly1by+LwFFW/7wNxn17ndpInjGD2ypb+lSYDhlCRJkiRJhfb4vAWcddFNVd325KP3ZbutN+lvaRLgaX2SJEmSJEnKkeGUJEmSJEmScuNpfZIkSZIkdXHqqady//33v2b5Y489xuTJk8vus/3223P66afXurR+e2T2L1j80ryy65YteoE5N15Ydt2Y8RPZZupBtSxNDcpwSpIkSZKkLroLmaZPn87MmTMHuJrqMmDSYGM4JUmSJElqaLW4mh14RTupUoZTkiRJkqSGVour2YFXtJMqZTglSZIkSVIX3c3L5JxMUvUZTkmSJEmS1IUhkzRwhuRdgCRJkiRJkhqXI6ckSZIKrrvLoUMxLokuSZLqm+GUJElSwfUUMBXhkuiSJKm+eVqfJEmSJEmScuPIKUmSpIJZsmwlj89bUPG2D8x9dp3bTZo4jtEjW/pbmiRJ0msYTkmSJBXM4/MWcNZFN1V125OP3pfttt6kv6VJkiS9hqf1SZIkSZIkKTeOnFLD8YpFUn66+/3zd0+qrUdm/4LFL80ru27ZoheYc+OFZdeNGT+RbaYeVMvSJEmSDKfUeLxikZSf7n7//N2TasuASZIkDWaGU5IkqeE5qlZSLfjcIkmVMZxS4XnFIknSujiqVlIt+NwiSZUxnFLhecUiKR+1CIbBcFjV4QcXktR/jgyTVC2GU5Lqii+C6kctgmEwHFZ1+MGFJPVe12D/Q4cf2+22X/zcpzjjnO93u74j9DfYlwSGU33mG+T65RWL6pvD4yXVgn8bJFVD0Udldg3r1/XcOX369LLrOj93GuxLAsOpPvMNcv3yTYSkWvBDi/rm3wZJ1dBoozJ97pRULYZTFSr6pyBddfcmyzdYg1/R3iA32u9e0XX3CWsRRqb4oYUkSZLUN4ZTFWq0T0G6e5PlG6zBr2hvkBvtd6/o6iFkqpTBqSRJklQdhlN95NwUUj783dNgYXAqSVoXX7dIUmUMp/qoSH8svNx7fWu00RtF+t2T6knRThlWsRR5OoKi/+4VvT9ft0hSZXINpyJiOHAGcBgwDrgHOCmlNKvC/Q8FvgBsD6wA/g6ckFK6qyYFF5SXe69vjt6QBoeifzpetFOGVb/KfSjT3eXsK72UPQzeD2aK/rtX9P4kSZXJe+TUDOAQ4HzgEeBI4PqImJZS+lNPO0bEWcCJwA+BHwCjgbcCm9auXEmqraJ/glxk9RAw9UajjcpU/fBDNUmSiie3cCoidgY+DByfUjq/tOwK4D7gHGCPHvbdDfgqcEhK6braVyvVj6KP3ig6P0HWYOGoTNWTIl0J1GBYktSI8hw5NR1YBVzcsSCltDwiLgHOjogJKaX53ez7eeAvKaXrImIIMCqltLj2JdfeYBk1UaQXeY3Gx0BSLRh8azAr0s+YwbAkqRHlGU7tCDxUJlS6C2gCpgDdhVP7AD+NiK8DnwXGRMTjZPNVXdmfolpbW0kprbVsiy226M8he7R06VKefPLJNbcPPfTQbrc9/vjjOfvss7td37XuSnTXW7Ve5HXtb6AN5GOXB/vru8HQ30YbbcSIESMq3r61tZWlS5dWtO3y5ct5/vnn19z+/ve/zyOPPFJ226effprNNtus7LptttmG4447ruIaO9TysYP8H7+i/2yW668ofxegMR+/asm7v0Z8bqlWMJx3b32xdOnSPr2+zUuRf/eg2P014nNLteTdG9hffwxkf62trT2uzzOcmgA8XWZ5RyA1sdxOETEO2JDslMBWsnmnXgKOA34UEUs91U95GegAYCAVube8jBgxgvamoRWfvrF8ZSv/nL9ondtNmjjuNaFXT4/B8ccfz3nnnVdRDZLUmX8baq9Io8J6+6HM8OHDK35T1vVDGUlSfckznBpJdoW9rpZ3Wl/OmNLXDYFdU0p3AkTEdWSTqn8N6HM41dzcTESUWbPuN4R9MWrUqG7ur3/b9k5teoPX1pzPaYsD99h95zvf6Xb72s0XNDD95dMbDFR/eZ1S+8DcZ2t2+kYjPbfkI/+/C7Vlf33RaP0V6e8eDJbHr9g/m72ZU6s3H8qMHz+e8ePH97e8Kij241fs/nxu6YvB0RvYX98MZH9z5szpcfRUnuHUMmB4meUjOq3vbj+AxzqCKYCU0oqImAl8PiLGFGUOqqJxsmcNVv5s1rfBMl+fJKlnzqklSSonz3BqPtmpfV11LCt/cn12Ct8KoNylSZ4lm69qLDDow6lNNhyz7o3qWNH7kzR4FD1cLHL4VuTeoPj9qb7586nByp9NqfHkGU7Nofwop11KX+8pt1NKqS0i5gDlJjHYnGweqpeqWGfNjBg+jNXLl7LsucomIFu9fCmLnlj3pJAjN96CoSNG9be8fityf0UP3uxPGlyKHL4VuTcofn9FV/Q3yEX++Sz6Y1d0Rf7ZlFRenuHUTOBLwCeB8wEiYjhwFHB7SmleadmWwKiU0kOd9r0G+FZEvDuldGNpu/WBDwJ3pJS6OyVw0Fn23JM8/NNvVnXbN374BNbbcjCcF1vc/nobvEF9hW+1Chah2P1Vo7dqXJWp6OFbkfsrcm9gf6o/vkGuX0V/7AzfJBVNbuFUSunOiLgGODciJgBzgSOAScCRnTa9AphGdrpeh/8hC7WujYjzgAXAJ4ANgP+sefESvQveerP9YAjfoDbBIhS7v2r0Vo2rMg3m8K0aityfwffaDL4zg6E3KH74VuT+itxboyp6+FZ0hov1q+iPXZ795TlyCuBw4MzS13HAvcABKaXbe9oppbQ0IvYCvgl8luzKfrOBfde1ryQ1gsEavlVLkfsz+O7btkXub7D0VvTwrcj9FT34NnxTvTFcrF9Ff+zy7C/XcCqltBw4ofSvu2327Gb5M8BhtalMtXLxLQ/y6PMLy66b//ISvjrzzrLrXr/R+nxy2ptqWZokSVqHIodvUOz+BmvwXY3T2Ys+KrPo4Zv9FU/RRxepNvIeOaUuih7e1EONkjTYFPlvQ5F7g+L3V3Q+frVXjdPZodijMos8qg/sr6t666+coo8uUm0YTg0yvpCpb0V+EVvk3qD4/RVd0R+/eqixr4rcGxS/v6Ir+uNX9OfOIinyqD6wv75sOxj6a8RRYaodwympior8Qq3IvUHx+ys6Hz9J6j2fOyX1h/PZ1bfB1p/hlCRJkqRCKfqosKL3V3RFevwG63x21VD0+ewG2ymnhlOS1ACK9CJIkqR1KfrfrqL3V3Q+fvWjyPPZweA65dRwSpIagC+CJNWCwbekWvC5RWo8hlOSJEnqE98ESqoFn1vqm+Gi+sJwSpIkSZIkVYUBk/piSN4FSJIkSZIkqXE5ckqSJEmSJGkdPGWxdgynJEmSJEmS1qHoAVOe4ZvhlCRJkiRJUoPLM3xzzilJkiRJkiTlxnBKkiRJkiRJuTGckiRJkiRJUm4MpyRJkiRJkpQbwylJkiRJkiTlxnBKkiRJkiRJuTGckiRJkiRJUm4qDqci4uSImFDLYiRJkiRJktRYejNy6gzgiYj4ZUS8PyKaa1WUJEmSJEmSGkNvwqldgEuAdwHXAk9FxH9FxBtrUpkkSZIkSZIKr+JwKqX0l5TSMcAE4CjgYeDLwIMRcWtEHBYRI2tUpyRJkiRJkgqo1xOip5SWpZSuSClNAwI4F9gamAHMj4j/jogpVa1SkiRJkiRJhdTfq/U9BswGHgSagDHAp4DZEfFrJ1CXJEmSJElST/oUTkXE9hHx/4B5wFXAtsBZwOuBLYCzgb2AS6tUpyRJkiRJkgpoaKUbRsQY4CPAJ4C3A23Ab4EfAL9OKbV12vxrEbEYOLWKtUqSJEmSJKlgKg6ngGeBEcBTwBnAJSmlp3rY/nHACdIlSZIkSZLUrd6EUzcC/wtc32WUVFkppavITvmTJEmSJEmSyqo4nEopvb+GdUiSJEmSJKkBVTwhekTsExHf6GH9NyJir+qUJUmSJEmSpEbQm6v1nQhs08P6yaVtJEmSJEmSpIr0Jpx6K/DnHtbfWdpGkiRJkiRJqkhvwqmxwJIe1i8DxvWvHEmSJEmSJDWS3oRTTwNTe1g/FXimf+VIkiRJkiSpkfQmnPo1cERE7Nt1RUTsAxwB/KZahUmSJEmSJKn4hvZi27OBQ4AbIuJ6YE5p+RRgf7JRU2dWszhJkiRJkiQVW8XhVErp2YjYDfgfsjDqgNKqduB64DMppfnVL1GSJEmSJElF1ZuRU6SUHgcOiIhxwDalxY+klBZUvTJJkiRJkiQVXq/CqQ6lMOovVa5FkiRJkiRJDaZP4VREjAE2oMyE6imlJ/pZkyRJkiRJkhpEr8KpiPgwcDLwph42a+5XRZIkSZIkSWoYrxn51J2IeD/wY7JA6yKgCfgJcA2wCpgNnFH9EiVJkiRJklRUFYdTwJeAB4EpwNdKyy5NKX0Y2AkIYE41i5MkSZIkSVKx9Sac2gG4PKW0HGgrLWsGSCndB/wA+M/qlidJkiRJkqQi60041Qy8WPp+Wenr2E7rE/DmahQlSZIkSZKkxtCbcOopYBJASmkZ8BwwtdP6AJZUrzRJkiRJkiQVXW+u1ncHsC+vzjf1C+ALEbGMLOQ6DvhldcuTJEmSJElSkfVm5NR/AzdHxMjS7ZPITuU7jSywmks2abokSZIkSZJUkYpHTqWU/gL8pdPt54EpEbED0Ao8mFJq625/SZIkSZIkqauKwqmIGA18EbgzpXRD53UppXtrUZgkSZIkSZKKr6LT+lJKS4CvAlvUthxJkiRJkiQ1kt7MOTUX2LRWhUiSJEmSJKnx9HZC9E9FxIbVuvOIGB4R50TEvIhYFhF/joh9+nCc30REe0ScX63aJEmSJEmSVHsVT4gOLAJeAlJEXA78A1jadaOU0hW9OOYM4BDgfOAR4Ejg+oiYllL6UyUHiIgDgT16cZ+SJEmSJEkaJHoTTs3o9P3x3WzTDlQUTkXEzsCHgeNTSueXll0B3AecQwWBU0S0AOcB5wKnV3K/kiRJkiRJGjx6E07tVeX7ng6sAi7uWJBSWh4RlwBnR8SElNL8dRzj88BI4FsYTkmSJEmSJNWdisOplNItVb7vHYGHUkqLuyy/C2gCpgDdhlMRsSlwCnBcSmlpRFS5PEmSJEmSJNVab0ZOVdsE4OkyyzsCqYnr2P8bQAJ+VM2iWltbSSmttWyLLbao5l0MiKVLl/Lkk0+uc7t67A3sr4P9DT6V9gbF7q8eewP762B/g4/PLZl67A3sr4P9DT4+t2TqsTewvw72N/iU6621tbXHfSoOpyLiaxVs1p5SOrPCQ44EVpRZvrzT+u5q2Rk4HJiWUmqv8P4kSZIkSZI0yPRm5NRpPaxrJzsVrx2oNJxaBgwvs3xEp/WvERFNwAXAtSmlP1Z4XxVrbm6m/CmCi6p9VzU1atSobvoop756A/tbm/0NJr3rDYrdX331Bva3NvsbTHxu6ay+egP7W5v9DSY+t3RWX72B/a3N/gaTcr3NmTOnx9FTvQmnJnez/9ZkV+8bCxzRi+PNJzu1r6uOZfO62e/fgJ2Br0bEVl3WrV9a9mxKqWy4JUmSJEmSpMGjNxOiP97NqrkRcSNwK3AU8NUKDzkH+HxEjOkyKfoupa/3dLPflsAQ4Pdl1h1V+rc/8NsK65AkSZIkSVJOhlTjIKV5n2aSzQNVqZnAMOCTHQsiYjhZuHR7SmleadmWEbFtp/1+STZ6qus/gF+Vvv9b3zqRJEmSJEnSQKrm1fpagA0r3TildGdEXAOcGxETgLlkpwVOAo7stOkVwDSyOa1IKc0tbbuW0vmMc1NK/9e38iVJkiRJkjTQqhJORcROwOeBB3u56+FkE6gfDowD7gUOSCndXo26JEmSJEmSNLhVHE5FxKPdrBoPrAesptMpepVIKS0HTij9626bPSs8VlNv7luSJEmSJEn5683IqSeA9i7L2snmd3oY+EFK6Z9VqkuSJEmSJEkNoDdX69uzhnVIkiRJkiSpAVXlan2SJEmSJElSX1QcTkXEhyLiih7WXx4R06tTliRJkiRJkhpBb0ZOfQZo62F9K/DZ/pUjSZIkSZKkRtKbcOpNwN09rL8b2K5/5UiSJEmSJKmR9CacGk02Oqo77cB6/StHkiRJkiRJjaQ34dRjwO49rN8deKJ/5UiSJEmSJKmR9Cacug74QER8ouuKiPg48AHgZ9UqTJIkSZIkScU3tBfb/hfwPuAHEXE8MKe0/K1kc00l4OtVrU6SJEmSJEmFVvHIqZTSIuCdwEXABODQ0r+JwP8Au6WUFtaiSEmSJEmSJBVTb0ZOkVJ6BTg2Io4DXlda/EJKqb3qlUmSJEmSJKnwehVOdSiFUc9XuRZJkiRJkiQ1mIpP64uI4yLiph7W/y4ijq5OWZIkSZIkSWoEvbla35HAP3pY/zDw8X5VI0mSJEmSpIbSm3DqDcDfe1h/f2kbSZIkSZIkqSK9CaeGASN6WD9iHeslSZIkSZKktfQmnHoYeHcP6/cD5vavHEmSJEmSJDWS3oRTPwH2i4gzI6KlY2FEDIuI08nCqR9Xu0BJkiRJkiQV19BebHsesD9wEvDvEfFQafm2wHjgNuDb1S1PkiRJkiRJRVbxyKmU0iqy0VFfAZ4Cdiz9exL4MrAP0FSDGiVJkiRJklRQvRk51RFQnVv6t0ZETAW+A3wI2LBq1UmSJEmSJKnQehVOdRYR44GPAR8H3kI2aurhKtUlSZIkSZKkBtDrcCoi3kMWSB0EtJAFUqcD16aU7q9ueZIkSZIkSSqyisKpiNiKLJA6AtgceAGYCRwKnJRS+lmtCpQkSZIkSVJx9RhORcRHyUKpaUAr8Cvgs8BvgEnAR2tdoCRJkiRJkoprXSOnfgg8CnwB+ElK6cWOFRFRw7IkSZIkSZLUCIasY/0KYCvgfcC/RMTImlckSZIkSZKkhrGucGoC2aipDclGUT0TEZdExB5kV+eTJEmSJEmS+qzH0/pSSi8D3wO+FxFvAz4BfAQ4EngeaAfG1rZESZIkSZIkFdW6Rk6tkVL6W0rpOLLRVIcB95dWXRwRcyLi5IjYvhZFSpIkSZIkqZgqDqc6pJRWpJR+nFLaB9gaOBsYB5wB3FPl+iRJkiRJklRgvQ6nOksp/TOl9DWySdMPAH5WjaIkSZIkSZLUGHqcc6pSKaV24Lelf5IkSZIkSVJFqhJONZqNxw1nq03HMGpEM8Oa+z74bP68p2D5cth2WhWrg2cXLeelxx+vePuVS5fx7p02rWoNUIP+Vq+EpS/T3t5eneNJkiRJkqTcGU71QvOQJnZ78+vYdtIGjBk1nGHDWmge2vdwamjzEBi5HmPfsGMVq4Shw0f1avv1Rg9npzdvXtUaoPr9ta5ezfJlS3lhyUrWa2+nqampKseVJEmSJEn5MZzqhddPHMNbtt6QDTccT8vI9fodjmwxcRysWsnyBc9UqcLMiHGb0jx8RMXbL1u+ivkvLKxqDVCb/l5ZOpIFS1bywgsvsNFGG1XtuJIkSZIkKR+GU72w+UYjGT16ZFWCKfXN2FHDWdraxPLly/MuRZIkSZIkVUG/rtbXaIY2D2Ho0GaDqZwNbR5KW1tb3mVIkiRJkqQqMJySJEmSJElSbgynJEmSJEmSlBvDKUmSJEmSJOXGcEqSJEmSJEm5MZzSa1x37VXc+Ntf512GJEmSJElqAIZTeo3/u/Yqbvzdb/IuQ5IkSZIkNQDDKUmSJEmSJOVmaN4FqP9WrFjJZT++ihtm3cyzzz3PsJYWJkyYwO67786JJ564Zrs77riDiy++mHvvvZcVK1aw1VZbceihh/L+f5u+Zpv999kNgOeefWbN9wAzrryWTTadMHBNSZIkSZKkhmA4VQD/df73+PlvbuC979mXj37wYIYMH80TTz3NnXfeuWabq666ilNPPZUpU6ZwzDHHMHLkSO644w5OO+00Hn3sn3zk8E8DcMJXvsZF//Mdxo4dy4cPPWLN/mPHbjDQbUmSJEmSpAZgOFUAf7jtdt65y9s546snADBi3KY0Dx+xZv1zzz3HWWedxYEHHsi3v/3tNcs/+tGPctZZZ/GjH17BnvseyISJm7H3u/+Fyy/7ARuMG8/e7/6XAe9FkiRJkiQ1FuecKoAxo0cz95+P88ij/yy7/oYbbmDlypVMnz6dl156aa1/e++9N21tbdz9t78MbNGSJEmSJEk4cqoQvvTZYzjl7G/ywaOOZvOJE9hll13Ze9992XvvvRkyZAhz584F4Mgjj+z2GC8vWDBA1UqSJEmSJL3KcKoA9tx9N3511eX88c9/4W9z7uXPd97Jtdddx0477cRll11Ge3s7AOeccw4bb7zxa/ZfsXI1LaM2GOCqJUmSJEmSDKcKY+z663Pgfvtw4H77MHyDTTjvu9/j4osvZtasWWy11VYAjBs3jt122+01+y5bvor5Lyxcc7upqWmgypYkSZIkSQ3OOafqXGtrK4sWLV5rWVNTE9tttx0Ar7zyCvvvvz8tLS1897vfZfny5a85xqJFi1i5cuWa2yNHjmTRwoWv2U6SJEmSJKnach05FRHDgTOAw4BxwD3ASSmlWevY72DgQ8DOwCbAE8AvgbNSSq/UtOhBZunSZex38EfY4527su0btmHcBhvw3MuL+OnV1zB27Fj22msvNtlkE0477TROPvlkDjjgAA466CA222wzXnrpJR5++GFuuukmLrzkSjbZdAIA275pe264/ldccdkP2GLLrWhqamLXd+zOiJEjc+5WkiRJkiQVTd6n9c0ADgHOBx4BjgSuj4hpKaU/9bDfD4B5wA/Jgqm3AJ8D9o+InVJKrx0eVFAjRgzn0A/8G3fNvpu7Zt/N0mXL2Wijjdh77705+uij2WSTTQA45JBD2Gqrrbj00ku56qqrWLRoERtssAGTJ0/m2GM/w7jx49cc84iPH82iRYv45c+vZcnixbS3tzPjymsNpyRJkiRJUtXlFk5FxM7Ah4HjU0rnl5ZdAdwHnAPs0cPu01NKN3c53mzg8tIxZ1S/4sFp2LBhfPbTH19r2Yhxm9I8fMRrtp06dSpTp059zfKuc05tMG48J5/29eoXK0mSJEmS1EWec05NB1YBF3csKI14ugTYPSImdLdj12Cq5LrS1zdVsUZJkiRJkiTVUJ6n9e0IPJRSWtxl+V1AEzAFmN+L421a+vpCf4pqbW0lpbTWsi222KI/h8xFa2srq1atWud2w4YNG4Bqqm/16tWveZzKqcfHDmDp0qU8+eST69zO/gafSnuDYvdXj72B/XWwv8HH55ZMPfYG9tfB/gYfn1sy9dgb2F8H+xt8yvXW2tra4z55jpyaQPnwqWPZxF4e70SgFfhZf4qSJEmSJEnSwMlz5NRIYEWZ5cs7ra9IRBwKfAL4Rkppbn+Kam5uJiLKrFnUn8MOuObmZpqbmyvbeFVbbYupgaFDh7L11ltXuHV9PXYAo0aN6ubnsBz7G0x61xsUu7/66g3sb232N5j43NJZffUG9rc2+xtMfG7prL56A/tbm/0NJuV6mzNnTo+jp/IcObUMGF5m+YhO69cpIt5FNk/Vr4FTqlOaJEmSJEmSBkKe4dR8slP7uupYNm9dB4iItwK/AO4FPpRS6vkkRkmSJEmSJA0qeYZTc4BtI2JMl+W7lL7e09POEbE18FvgOeDAlNKSqlcoSZIkSZKkmsoznJoJDAM+2bEgIoYDRwG3p5TmlZZtGRHbdt4xIjYFfge0Ae9JKfXrCn2SJEmSJEnKR24ToqeU7oyIa4BzI2ICMBc4ApgEHNlp0yuAaUBTp2W/BV4PnAvsHhG7d1o3N6X0p1rWLkmSJEmSpOrI82p9AIcDZ5a+jiObO+qAlNLt69jvraWvXy6z7nLAcEqSJEmSJKkO5BpOpZSWAyeU/nW3zZ5lljWV2VSSJEmSJEl1Js85p9RA3jbtPVx42Q/zLkOSJEmSJA0yeZ/WVxgbjh1FS0vv/juHNDXBsBZGjN+0anW0rVrZ530ffOA+Zv/lz7z/kA8xZsx6VatJkiRJkiSpO4ZTVdLSMpS2tnYen7cgtxomTRzHiGEt0N63/R968H6uvOJS3v2eA6seTv3pd7+kubm5qseUJEmSJEn1z3Cqih6ft4CzLropt/s/+eh9iS3G1vx+WltbaW1tpaWlpeJ9hg+vfFtJkiRJktQ4DKcEwI8uv5grr7gUgCM/esia5TOuvJYjP3oI7zv4g2zzhuCqH1/OvKef5hvfvIAdpryNmVf/mDtuu5mnnnyCFSuWs+WkyXzwI4fxrml7r3X8t017D58+8mMcc9RhAFx42Q/5wYwf8cufXs6Fl17BLbdnF1jc613v5CvHf4aRI0YMTOOSJEmSJClXhlMC4J2778n8eU/z+5tu4NPHfp6x62cjsMaO3QCAv/31Lm69eRb/+r6DGT1mPcZvuCEAP//Z1ez6jt3Za5/3sHr1Km75w018/YyTOf3sbzLp4Peu835POOVMNp84gc9++uM89PAjXPfr3zJ+3AZ8/phP1qxXSZIkSZI0eBhOCYDJW2/DNm/clt/fdAO7vXMPNtl0wlrrn37qSS669Eo232LLtZZffPlVDB8+fM3tf33/dD57zJH8bOZP+UAF4dR2276Rk7/0+TW3X164iJ//5gbDKUmSJEmSGsSQvAtQfXjrjm97TTAFrBVMLVq0kCVLFrP9W97K3H88XNFxpx904Fq3d9zhzbz8ykIWL1nSv4IlSZIkSVJdcOSUKrLpphPLLr/zT7fzkytn8Ogj/2DVqpVrljc1NVV23E02Xuv2+uuNAWDhosWMGT26j9VKkiRJkqR6YTilirR0GiHV4b5753D6KV/mzTtM4bjPf4nx4zdk6NCh/O6GX3PzrN9VdNzmId0M3mtv70+5kiRJkiSpThhOaY3Kxjq96o+33UxLSwtn/dd5tLS0rFn+uxt+XdW6JEmSJElScTnnlNYYMWIkAIsXL6po++YhQ6Cpiba2tjXLnn1mPn+6/daa1CdJkiRJkorHkVNaY5s3BgCXX3oR0/bal+bmoez6jt273f7tu+7Gz2b+lFO+cjx77rMfLy9YwK9+fi0TJ27OY48+MlBlS5IkSZKkOmY4VUWTJo7j5KP3zfX+oW2d23VnmzcER37iGH7582uZ/Zc7aWtrY8aV13a7/ZQdd+ILX/oq1/zkh1z0/QvYdMIEPv6pY3n22fmGU5IkSZIkqSKGU1WycuVqWlqGMnnz8RXvM6JlKLS307Z65bo3rkgbbatWMmRoy7o37caHDj2cDx16+FrLrp91R7fbv2f/9/Ke/d/7muUfO+KTa93+2y03rHX7mKMO45ijDnvNfgftvx8H7b9fb0qWJEmSJEl1zHCqSl58ZWmv95k0cRysWsnyBc9UtZYR4zat6vEkSZIkSZJqxQnRJUmSJEmSlBvDKUmSJEmSJOXGcEqSJEmSJEm5MZySJEmSJElSbgynJEmSJEmSlBvDKUmSJEmSJOXGcEqSJEmSJEm5MZySJEmSJElSbgynJEmSJEmSlBvDKUmSJEmSJOXGcEo18e1zzmLfffbJuwxJkiRJkjTIGU5JkiRJkiQpN0PzLqAoNhw7ipaW3v13DmlqgmEtjBi/adXqaFu1smrHkiRJkiRJqjXDqSppaRnKsPZVLHvuyYr3WVzlGkZuvAVDhrVAe5UPLEmSJEmSVCOGU1W07Lknefin38zt/t/44RMYtemkPu172y2/5+tnnMy3LriQ7d+8w1rrrv7JD5lxyYVc/uOf8ewz8/n5ddeQHnqABQteYoMNxrH7Hntx5CeOYfjw4dVoQ5IkSZIkNRDDKQHw9l12Y8SIkdx286zXhFO33fJ73rTdm9lo402YefWVrFixnAP/9d9Yb/31efihB/nFdTN54fnnOOnUs3OqXpIkSZIk1SvDKQEwYsQIdt51N/546x84+rgv0NTUBMC8eU/xyD8Sxxz3BQA+/qnj1hohdcB738/EzTZjxiUX8dyzz7DxJtWbP0uSJEmSJBWfV+vTGnvsuQ8vvvgC9//9njXLbrv59wwZMoR3TdsbYK1gavmyZbzyysu8afu30N7eztxHHh7wmiVJkiRJUn1z5JTWePsu72DkqFHcevMs3rzDFABuvWUW2715B8Zv+DoAnnv2GX4442L+/KfbWLxo0Vr7L1myZKBLliRJkiRJdc5wSmu0tAxnl3fszh9vu5ljPnM8z8yfx6OP/IPjPvdFAFpbW/nql7/AokUL+cCHPsYWW05ixIiRvPDC8/y/c8+iva0t3wYkSZIkSVLdMZzSWvaYtjc3z/od9907hwfu/ztDhjSz+x57AfDPx+by9FNP8MUTT2Hf/fZfs8/f/npXXuVKkiRJkqQ6ZziltUx9+66MGj2aW26exUMP3McOU3Zkg3HjARgypBmA9vb2Ndu3t7fz859dnUutkiRJkiSp/hlOaS0tLS28Y7d38YebbmDZsqV87j9OXLNuiy0nMWHiZlx80fd48YXnGTV6NLffejOLFy/q4YiSJEmSJEndM5yqopEbb8EbP3xCrvdfDXvsuQ+zbvwtzc3NvHP3PdcsHzp0KKed9U0u/N55XP2THzKspYXddt+Dg943nWM/fXhV7luSJEmSJDUWw6kqWblyNbQMY+gmr694nxEtQ6G9nbbVK6tWR9uqlQwZ2tKvY+y86zu5ftYdZddtOWkrvv7NC16zvOv2XzzxZCZNHAerqtebJEmSJEkqHsOpKnnxlaW93qcjvFm+4Jmq1jJi3KZVPZ4kSZIkSVKtDMm7AEmSJEmSJDUuwylJkiRJkiTlxnBKkiRJkiRJuTGckiRJkiRJUm4MpyRJkiRJkpQbw6leaG1rp621Le8yGl5rWytDhvijK0mSJElSEfgOvxcWLFrJ8hUraG8zoMpLW3s7q1auYujQoXmXIkmSJEmSqsBwqhcef3YJS5auYNmSlw2octDe3s4rS1bQunoVY8eOzbscSZIkSZJUBQ4/6YWXFq7kj/c+x+47wOjFSxgxYjhDmvue7z25ehG0tbF6xdIqVglDl86jqbm54u1Xt7axdPnKqtYA1e+vdfVqli9bwnpj1mPUqFFVOaYkSZIkScqX4VQvPfTEQp57eTmTNhnNuPVaaB7S1OdjvWvqZFi+iFfm3lvFCmHs1jswbMwGFW+/aMkK7n7w6arWADXor201LJjHhnsfUp3jSZIkSZKk3BlO9cFLC1fy0sL+jzT64L++i7bnH+OVh26pQlWv2mTKzqy35aSKt18y91lu/OvsqtYAtetvSFPfA0FJkiRJkjS45BpORcRw4AzgMGAccA9wUkppVgX7bgacB+xHNnfW74HjU0qP1a5iSZIkSZIkVVPeE6LPAI4HfgR8HmgDro+Id/S0U0SMAf4AvAs4GzgVeBtwc0SMq2XBkiRJkiRJqp7cRk5FxM7Ah8lGO51fWnYFcB9wDrBHD7sfC2wDTE0p3V3a9/rSvscDX6td5ZIkSZIkSaqWPEdOTQdWARd3LEgpLQcuAXaPiAnr2PfPHcFUad+HgFnAB2tTriRJkiRJkqotz3BqR+ChlNLiLsvvApqAKeV2ioghwA7AX8usvgt4Y0SMqmKdkiRJkiRJqpGm9vb2XO44Iu4Dnk4pvafL8u2A+4FPppQuKbPf64Dnga+mlL7RZd2xwPeBbVJKc3tb0+zZs9vIgrG1DBmSZXhtbdX9v8qO2w7tbVU9Lk0d9a77uLXq7dVjF7O/mvUG9veaOuqov1709modxezP55a+8XevH4rcn88tXWrwuaW3/N3rhyL353NLlxp8buktf/f6ocj99dxb+9SpU8sOksrzan0jgRVlli/vtL67/ejjvuvSRjaabOFaCyt8wu71nbW11uS4vfnhqlVv2bGL21/NegP7W6uOOuuvl0/sRe7P55a+8XevH4rcn88tnWrwuaUv/N3rhyL353NLpxp8bukLf/f6ocj9dd/b+mSZS1l5hlPLgOFllo/otL67/ejjvj2aOnVqnv8fkiRJkiRJDSfPOafmA+UmPe9YNq+b/V4iGzXV3b7tpWNLkiRJkiRpkMsznJoDbBsRY7os36X09Z5yO6WU2oC/AzuVWb0L8I+U0tJqFSlJkiRJkqTayTOcmgkMAz7ZsSAihgNHAbenlOaVlm0ZEduW2XfXiNix074B7A1cU+vCJUmSJEmSVB25Xa0PICKuBt4PnAfMBY4A3g7slVK6vbTNzcC0lFJTp/3WA+4GRgPfBlYD/0F2pb0pKaUXB64LSZIkSZIk9VWeI6cADgcuKH39DtlIqgM6gqnupJQWAXsCfwROAc4kO01wmsGUJEmSJElS/ch15JQkSZIkSZIaW94jpyRJkiRJktTADKckSZIkSZKUG8MpSZIkSZIk5cZwSpIkSZIkSbkxnJIkSZIkSVJuDKckSZIkSZKUm6F5FyBpcIiIbYDDgDcDo4CngLuAGSmlVXnWJkkaWBExBDgW2B64PqX0i4g4B9gfuAf4j5TS83nWKDWCiJgMHAA0Ab9NKT2Sc0n9FhE7AlsDvwFWAP9eun1TSunXedbWXxHxTuDRlNL8iBgOnEz2+AH8Evh6SmllbgXWSET8FdgvpfRS3rX0V0RsCUwF7k8pPdxl3UdSSj/Jp7L+i4g3kb3f2x5YD1gE3A/8MKX0YJ61gSOnJAER8X5gDrAr2RPV3sBw4EjgoYh4fV61SUUWEReUXsiqYCKiOSK+lncd/XAB8GmyF65nR8SlQACnAKOB7+ZYm1RYEfFgp++nkYXB7yULOO6OiL3zqq0aIuITZKHUd4BbgRPJ3iiPAX4aER/PsbxqmNHp+28BewFnA2eRvb4+J4eaqiYirij3D9gOuLD0fd2KiH8B7gNOA+ZExH9HRHOnTS7KpbAqiIiPAH8CNif73fsxcAuwGXBHRHwox/IAR07lKiIC2K9084auyWy9iYjXkX3qcW9KaVlE7ADsW7p9U77VVUdEvJEuSXO9P24l5wL/mlL6A0BE7Accn1J6Z0R8iexNyIF5FlgLEXEC8P2U0tK8a+mPiNgxpXR33nWoT44DjoqI54ArgMtTSo/nXFNNRcRoYEhKaVHetdTYUOBU4Iy8C+mjQ4ApKaXnIuIC4AngdSmlBRFxC1CEv33diogtU0pP5F1HNZVep20GPFiUkRulUUWdR3zfl1J6Jd+q+m3zTt+fBXwmpXQFQER8tLRstzwKq5ITgGlkI8EeBD6XUroDICJmkr0mvTS/8vptQkppfun795E9j74EEBE3k41SOT6n2qrhA2RnVswieww7tAKPA4vzKKqKvg58JKX064jYBPgR8POIOLj0vNnU8+6D2teBA1NKt3ddUfqg9ErgqgGvqhPDqQFUekI6PqV0d0QcDFwO/AFoB86KiMNSSr/Is8a+ioj3kaWvS4DlEXE0cAlwJ/CfEXF2Sun8HEvsl9LwzquAtwJzgVeA9YGtI+Ie4MN1/iJ2Y+DmTrd/T/YEBfDfQD1/+k8PnzKeCMyNiJdTSr8fyJqqbHZEzCULN64oUrgREZsCl5G9EL8f+FLHi9jS+oUppfXzqq8KlgETgOnA4cApEfFHsk9eZ6aUluRYW79FxEkppbNL329I9ryyH9AeEX8ADk0pPZdnjf1RGk3UnXp/jTUCWFD6/iWgjVffdCyi/vvrVulUnMeA5nVtO1iVTt34KdmHhmeTjb65gizEeSki/iWldF+OJfZLREwAfgLsUVrURunnMiLOB76WUmrPqbz+6lx3kPXZ4afU/6jFCR0f7EbEMrKRHB1uBCblUlX1PBERb08p/YXslMXOz5VDgZH5lFU1OwDfIxsp9R8ppXkAEXEM8M16/ptesnXHqaUppWcjYn+ygOo3EXFQvqX120bA37pZdzfwugGspSxP6xtYbyU7dQqyT1MPTCkdlFJ6H9lQ3a/nVVgVnA18IKW0MfA54BrgoJTSv5G9EflMnsVVwWXAbWSfGr8lpbR7SmkHslDnNtYewluPZpM9bh2+QBYEQPZJyOqBLqjKbiJ7UX5Jl38bAOcDF+dVWJUsI/skdS/gkYj4fUQcXhqhUu8uAOYBewJXA7+MiEM7ra/nT7AA2lNKS1JKl6eU9gG2Ifs08qvAMxExI9fq+u/ETt9/k+zN4wRgIvAC2Sfk9exQst+/p8v8eyrHuqrhT8BFpVMcLiQLN74YEesBXyzdrlsRsUd3/3g18KhnF5D9bTsROBPYkuyNyfrAz4Bv5FdaVVwCPEA2EmyL0u3/At4G7E7Wc70aFhFHlU5vawdaOq0bSh2HpiVLImJY6fsZXULEkWRBYz07A7g6Io4i+x38VUR8LCI+BvyK7MP8upVS+kdK6T3A/wF/iIgvRcRQ1g5V69mCiNii40ZKaTXwEbLRwzdR379/NwKXRsTWnReWbv9vaX2uCvup1yC1GhhH9gnkROCOTuv+TH1/UrBFSuk3pe9/AQxPKf0VoDRSbKP8SquKXYD9uw6DTyktKc0pUu+T/x1HNmS148Xcc8D7S9+/kfoPb04jG5ny5ZTSbzsWRsR8YKcCfMrTmlK6HLg8IiaRjcA5Gfh+RFxL9uLv5jwL7Ic9gUkppeVkc238nuzTq9Eppf+lOC+GACiNejuLbDTtbmSPZT3rHB7uC0ztmEQ7Io4D7s2lqur5O9lp+a8Z9RwRI4CvDHxJVXMs2cjZb5OF+N8Afkv2YdRjwMG5VVYdNwPzqf83wt2ZCryH7I3UeWSnDLcDqyPiZOAfeRZXBbuTfQi6GiAivkA2CfU5EXEE2evqk3Osrz/u5NXn/gfIRqj8pXR7GpDyKKqKZpF9EPNgSum4LuveS53/XUgp/TQiXiR77bkTMIzsA9KnyD7srufgdI1Sn78hC+PmkE15UgQ3AUfR6ZT80nPnxyPiQrL5eevVx8n+rj8QEauAhWQfWAwl+9Ai9/neDKcG1jXA9yLi08APyU53O4vsxftXyF7k1qunI2K/lNLvyOYmWt4xD05EvJUs7KhnT5L9wfxZmXUHkKXpdSul9FBEbAds++qi7AVfSunvwJdzK64KUkpnRMSPyMKao8nmN3gy77pqoRRunAmcWTp//Aiyn9vxuRbWd0Pp9LcqpXRvROwJ3FgawVHvuh35VTp98Y7u1teJ9ohoIhup3QS82GndS2QviurZDLofhb4KOH3gSqmu0nPJWnMNlub3GZ9SerH8XnXlceCjnU8T7lAKFuv6lFqgqVMYtSSltKzTusXU/6lFz5IFHA+Vbm9NNjKTlNIT9fz3IaW0Zw+r7+TVK7/VpZTSYT2s/j1ZeFXXUko3kr1OGQJsAixLKb2cb1XVl1JaCHwhIqaQBacL862oKo6lm4wkpXRMRNTtmU4ppQXARyJiFNnggzFkfw8eHizz7xpODawvkg2Ze4rsRdFbgJNK657g1ZEq9eg0stNtFpBNbvh5siflW4B3ldbXs88A10bEf5CdytAx59QUsgnSD8mvtOpIKbXy6ql8hZNSehTYPyI+AMwqXU2knofmdlY24ChNeHh7RHx2gOupptlkn/5f27EgpfRIKaCaRXbVsLqVUqrbN1AVGkM2ariJbJTbFF6d7+ANwPP5lFUdKaXv97CulToOp8ophR1FCKYA/ko2qqFcANxGnX/oRDaf4pYppSdSSuO6rNuB7NTTenYOcEtEXE32/PJBsikziIjtgUdzrK1mCjDZe486RtYWRUqpjWyEZqGllObw6tQ1da10lky3F4yo8zmGASgFUXPyrqMcw6kBVPrU6mOlq/TtTHY1jmVkw1dv7RipUo9SSleXJvHdHPhrSqktIp4gm2frgpTSrflW2D8ppVml83EPJgujNiZLmi8HrkspvZBnfapcSumaiLieLDB9mmx0Q707uqeVKaUVA1VIDZxCdjr0WlJKj5fmhvnkwJekXpjc5Xbn58oNyObWkvJwaHcrSm9Ouv7s1pvDgZe7Wfc6sufWupVSujgiHuHV0X0fSSl1jLh5hGLMGyZJDaWpvb1Q03XUrYhoBk5KKdXrJae7VeTeoPj9FV3RH78i91fk3hqBj58Gq6L/bNqfJGkw8mp9g8dQSsORC6jIvUHx+yu6oj9+Re6vyL01Ah8/DVZF/9m0P0nSoONpfQMoIi7tYXVdPxZF7g2K31/RFf3xK3J/Re6tEfj4abAq+s+m/UmS6o1P3gPrUOASsisUdVXvEzMXuTcofn9FV/THr8j9Fbm3RuDjp8Gq6D+b9idJqiuGUwPr78ANKaVfdF1RumzxVwa+pKopcm9Q/P6KruiPX5H7K3JvjcDHT4NV0X827U+SVFecc2pgzaD7//NV1Pclp2dQ3N6g+P0V3QyK/fjNoLj9zaC4vTWCGfj4aXCaQbF/Nmdgf5KkOuLV+iRJkiRJkpQbR05JkiRJkiQpN4ZTkiRJkiRJyo3hlCRJ0gCIiCMjoj0i9uzj/nuW9j+yupX1uo5+9SFJktSVV+uTJEmFVwpS/lC6+f2U0mfKbLMx8BQwDLglpbTngBVYZaUA6zLgAymlmTmXI0mS1CNHTkmSpEayHDg0IoaXWXcY0ASsHtiSJEmSGpvhlCRJaiTXAeOA95VZdxTwG2DFgFYkSZLU4DytT5IkNZK/AduTBVFXdyyMiJ1Ly08G9im3Y0S8HzgBmAK0A/cA56aUfl5m208BXwQmA08C3wNe6ea4Y4GvAocAWwALgZuAk1JKj/a+xfI6ndp4FNkIsS8B2wDPkJ3qeG6t+4iIHYE/AbcB+6WU2kvLm0u17QTsnFK6rypNS5KkuuDIKUmS1GguBfaLiM06Lfs48Bzwq3I7RMSxZKOuxgNnAGeWvv+/iPh0l22/APyA7BTCrwKXkwVBny1z3LHAHcCxwK9L23wP2Bu4MyIm9bXJHhwDfA34CVnwNB84JyIOrXUfKaW7gS8D+wJf6XSIU4F3AccbTEmS1HgcOSVJkhrNj4BzgSOAr0fESODDwMUppdURsdbGETGutP1cYJeU0sLS8v8B7ga+HRFXp5RejogNgLOBB4HdUkpLS9teBjxUppYzgNcDu6aU7ul0nzOAvwOnA0dWp+01tgTelFJ6pXRflwKPkwVKPy4tq1kfKaXvRMQ+wBkR8QdgBHAScG1K6aIq9ypJkuqAI6ckSVJDSSm9CPyCV0Ofg4GxZCOqynk3MBr4TkcwVTrOQuA7wBiykUAA+wGjyE6TW9pp26eAKzsfNCKagI8CtwJPR8TrOv4BS4A/l45XbZd1BFOl2paW7usNnbapdR9HkZ1O+BOysPBJ4JPVaU+SJNUbR05JkqRGdBnw64jYneyUvrtSSg90s+3k0tf7y6zrWPb6Ll/LjS7qevyNgA3Jgpvnu7nvtm6W90e5eaxeLNXSoaZ9pJReioijgBtLi3ZPKb3cQ82SJKnADKckSVIjugF4mmyuo72Af8+hhqbS15uAcwbwflurfLy+9nFQp++nALdXqyBJklRfDKckSVLDSSm1RsQVwH8Cy8hOL+tOx0ij7YFZXdZt12Wbjq/b9rBth+eBl4H1U0o3VVb5gKlpHxFxENkcV5eRXTHwWxFxa0rp732uWJIk1S3nnJIkSY3qQrKJuo/pPJdUGTeSzZ302YhYr2Nh6fvPAot59fS0G8nCruMiYlSnbTcH1roaXkqpjWz+pp0jYnq5O46IjXvbVJXUrI/SVRIvJZts/TNk81UtA35ampxekiQ1GEdOSZKkhpRSegI4rYLtXo6ILwPfB+4sXYEOsgnVtwGO7phgPKW0ICJOAb4F3FEanTUKOAb4B7Bjl8OfBLwTuDoiriabPHwlMAk4AJhN9a/Wt0616iMihpAFWaOBD5UmW18aEZ8AfgacDxxd4/YkSdIg48gpSZKkdUgp/TfZVf1eJpun6tTS9/+WUvpBl22/TRbijAS+QRYufQv4bpnjvkIW6pxKdtrgN8jmbTqILOD5nxq0U5Ea9XEyMA34j86n8KWUrgP+G/h0RBxSm44kSdJg1dTe3p53DZIkSZIkSWpQjpySJEmSJElSbgynJEmSJEmSlBvDKUmSJEmSJOXGcEqSJEmSJEm5MZySJEmSJElSbgynJEmSJEmSlBvDKUmSJEmSJOXGcEqSJEmSJEm5MZySJEmSJElSbgynJEmSJEmSlJv/D2NFVHX/RiakAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "table = pd.DataFrame.from_dict({(i,j,k): results[i][j][k] for i in results.keys() for j in results[i].keys() for k in results[i][j].keys()}).T\n", "table.reset_index(inplace=True)\n", "table.rename(columns={'level_0':'model','level_1':'fold','level_2':'set',0:'acc'},inplace=True)\n", "\n", "table['mod_num'] = table.model.str[5:].astype(int)\n", "order = table[table['set']=='val'].groupby('mod_num')['acc'].mean().sort_values(ascending = False).index\n", "plt.figure(figsize=(20,5))\n", "sns.barplot(x='mod_num',y='acc',hue='set',ci='sd',data=table,\n", " palette=['C0','C1'],order=order,errwidth=0.75,\n", " errcolor='k',capsize=0.25)\n", "plt.xticks(rotation=90,fontsize=12)\n", "plt.xlabel('Model Index')\n", "_=plt.ylabel('Accuracy')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Best performing model yielded mean training and validation accuracies of 0.63 and 0.59, respectively. Its hyperparameters were: 1) L2 = 0.003, dropout = 0.3, and learning_rate = 0.006." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "# load data\n", "dataset = Dataset('../../data/processed/03a-segments_normWithinSubjRun_rAI.pkl')\n", "dataset.load()\n", "dataset_df = organize_dataset(selective_segments(dataset.data,None))\n", "dataset.train_test_split_sid()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:Layer gru will not use cuDNN kernel since it doesn't meet the cuDNN kernel criteria. It will use generic GPU kernel as fallback when running on GPU\n", "WARNING:tensorflow:Layer gru_1 will not use cuDNN kernel since it doesn't meet the cuDNN kernel criteria. It will use generic GPU kernel as fallback when running on GPU\n", "WARNING:tensorflow:Layer gru_2 will not use cuDNN kernel since it doesn't meet the cuDNN kernel criteria. It will use generic GPU kernel as fallback when running on GPU\n", "54/54 [==============================] - 1s 10ms/step - loss: 0.7322 - acc: 0.6055\n" ] }, { "data": { "text/plain": [ "[0.7321519255638123, 0.6054816842079163]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "X_train, y_train = query_dataset(dataset_df,dataset.train_idx)\n", "X_test, y_test = query_dataset(dataset_df,dataset.test_idx)\n", "\n", "model = tf.keras.models.load_model('../../models/03-rAI/CustomGRU.h5')\n", "model.evaluate(X_test,y_test)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:From :8: Sequential.predict_classes (from tensorflow.python.keras.engine.sequential) is deprecated and will be removed after 2021-01-01.\n", "Instructions for updating:\n", "Please use instead:* `np.argmax(model.predict(x), axis=-1)`, if your model does multi-class classification (e.g. if it uses a `softmax` last-layer activation).* `(model.predict(x) > 0.5).astype(\"int32\")`, if your model does binary classification (e.g. if it uses a `sigmoid` last-layer activation).\n", "3/3 [==============================] - 0s 6ms/step - loss: 0.6610 - acc: 0.7128\n", "3/3 [==============================] - 0s 6ms/step - loss: 0.7736 - acc: 0.5253\n", "3/3 [==============================] - 0s 6ms/step - loss: 0.6841 - acc: 0.6793\n", "3/3 [==============================] - 0s 6ms/step - loss: 0.6932 - acc: 0.6550\n", "3/3 [==============================] - 0s 6ms/step - loss: 0.7269 - acc: 0.5993\n", "3/3 [==============================] - 0s 6ms/step - loss: 0.6976 - acc: 0.6458\n", "3/3 [==============================] - 0s 6ms/step - loss: 0.6813 - acc: 0.6565\n", "3/3 [==============================] - 0s 6ms/step - loss: 0.7520 - acc: 0.5729\n", "3/3 [==============================] - 0s 5ms/step - loss: 0.7492 - acc: 0.5918\n", "3/3 [==============================] - 0s 7ms/step - loss: 0.7623 - acc: 0.5759\n", "3/3 [==============================] - 0s 6ms/step - loss: 0.7855 - acc: 0.5789\n", "3/3 [==============================] - 0s 8ms/step - loss: 0.7574 - acc: 0.5729\n", "3/3 [==============================] - 0s 6ms/step - loss: 0.6959 - acc: 0.6771\n", "3/3 [==============================] - 0s 6ms/step - loss: 0.7006 - acc: 0.6337\n", "3/3 [==============================] - 0s 6ms/step - loss: 0.6801 - acc: 0.6815\n", "3/3 [==============================] - 0s 6ms/step - loss: 0.7595 - acc: 0.5744\n", "2/2 [==============================] - 0s 4ms/step - loss: 0.7843 - acc: 0.5493\n", "3/3 [==============================] - 0s 7ms/step - loss: 0.7736 - acc: 0.5220\n", "3/3 [==============================] - 0s 5ms/step - loss: 0.8214 - acc: 0.4613\n" ] } ], "source": [ "from collections import defaultdict\n", "from sklearn.metrics import accuracy_score\n", "\n", "test_acc = defaultdict(dict)\n", "for subj_idx in dataset.test_idx:\n", " subj = dataset.sid()[subj_idx]\n", " X_test, y_test = query_dataset(dataset_df,[subj_idx])\n", " y_pred = np.squeeze(model.predict_classes(X_test))\n", " for tp in range(X_test.shape[1]):\n", " test_acc[subj]['TP{:02d}'.format(tp)] = accuracy_score(y_test,y_pred[:,tp])\n", " loss, acc = model.evaluate(X_test,y_test)\n", " test_acc[subj]['overall'] = acc" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Probability of predicting the true class as a function of time\n", "\n", "Following figure shows probability of predicting the true class as a function of time. The probability of predicting the true class increases with time." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "## get probabilities for appraoch segments on X_test\n", "prob_df = pd.DataFrame(columns=['Subj','Timepoint','class','prob'])\n", "for subj_idx in dataset.test_idx:\n", " subj = dataset.sid()[subj_idx]\n", " for direction, k_class in zip(['appr','retr'],[1.,0.]):\n", " X_test, y_test = query_dataset(dataset_df,[subj_idx])\n", " X_test, y_test = X_test[y_test==k_class], y_test[y_test==k_class]\n", " if k_class == 1.:\n", " temp_df = pd.DataFrame(np.squeeze(model.predict(X_test)))\n", " else:\n", " temp_df = pd.DataFrame(1-np.squeeze(model.predict(X_test)))\n", " temp_df['Subj'] = subj\n", " temp_df['class'] = direction\n", " temp_df = temp_df.melt(id_vars=['Subj','class'],var_name='Timepoint',value_name='prob')\n", " prob_df = pd.concat([prob_df,temp_df],axis=0, ignore_index=True)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnsAAAGdCAYAAABqwbWVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAACem0lEQVR4nOzdeXxcd33v/9eZM2d2jXbJ8m7HybGTGJI4WwlZgbC2lBJKL5SQQNLecu+l5d7QFsjvwgVaytKS0gvtLQFCKClLKDuULJCQBLLY2RefxPsmax/NPmf7/v44I1mSJVv7jOTP8/HwQ/aZM2e+M5Zm3voun6+mlEIIIYQQQixPoVo3QAghhBBCLBwJe0IIIYQQy5iEPSGEEEKIZUzCnhBCCCHEMiZhTwghhBBiGZOwJ4QQQgixjEnYE2IJME3zPtM099W6HfXENM2PmaapTNNcvwDX3mea5n3TPPeKajuuG3NsffXYxyacq0zTvG0h2iGEEFMJ17oBQpyqTNNMAH8CvBU4C2gABoEdwHeAf7Msy61dC2fGNM2JRTsrwEHgx8AnLcsaXPxW1b9qIHzSsqwf1LgpQohlSsKeEDVgmuYm4KfAGcA9wKeAfqADeDXwNeBM4C9r1cZZehL4++rfW4A3AB8AXmOa5jbLsuxaNWwB/RqIA840zo0D3oRjHwW+DvxgkvNNQCrfCyHmRMKeEIvMNM048BNgI/BWy7L+Y8IpnzZN8wLggkVv3Nwdtizr38b8+wumaf4YeBPwZuC7k92p+po4S6knc4RlWT5Qnua50zpvzPmVWTVKCCHGkLAnxOK7gaDH5tOTBD0ALMt6DHjsRBcxTfNC4H3AK4DVBD1GTwOfsyzr+xPOXQP8H+BVwApgGNgF/D/Lsr5ePScEvB94D7CBoEepG3gQ+K+WZU2n52oyvyAIe5uqj3Mb8G6CXsxPA28E2gnC777qHLxPAFcDTcAh4NsEQ8HFSa6fNE3zC8AfAo3V1+DDlmXdO+E1eDvwTuAcoBPIVZ/b/7Ys6+nJGm6a5nnA54ALAZtgSPqDlmX1jjnnCuBXwPWWZd12oheiOtT9dcuyrqs+z73Vm95tmua7R86zLEurnr8P2GdZ1hUTrnM+8BHgUoLh/33A7QTfU+6Y884CPkbwPdIGDAEvEHyP/PREbRVCLB8S9oRYfNdUv/7rHK/zFmAzwfy+/UArQYj6D9M032lZ1h0ApmmGgbuBVcCXgBcJQtHLCMLC16vX+wjwcYJA8y8E4XED8HtAlOkNU07m9OrX/gnH7waOEgS7JJA3TXMd8Gi1fV8CXgKuAD4EXGKa5qsm6f27vdrWTxMEnz8F/tM0zddblnXPmPP+OzBA8LofBU4jmDP5kGma51mW9dKE664G7gW+B9wJnEcQhM83TfOCKYLnTPQB7wK+ATzANL8fTNN8I/AfBGH97wnmef4Owf/dOcDbque1Ar+s3u1fCL5H2oDzgYsIphEIIU4BEvaEWHxnA1nLsvbM8TqftCzrQ2MPVHu4ngBuBu6oHj6ToCfxryzL+swJrvcW4AXLsn5vwvG/nkGbDNM026p/bybo0fszgp7EH04491nLsv54Qvv/kaCX742WZf2sevhLpml+FriJIMx+ZcJ1XODSkfmApml+FdgJ/BOwZcx5r7MsqzDh8W4nmGf4AYJe0rFOAz5gWdYtY85/DvgHgh7Qv5v8JZiealv+zTTNbwB7Jgx/T8o0zRjB838EuGpM8P1/pmk+BfyDaZpXWJZ1H3AJQe/p2y3L+s5c2iqEWNqk9IoQiy9NMIQ4J2ODi2maiWpPToKgN2eLaZrp6s3D1a9XmqbZcYJLDgOrTNN85RyadTVBj1UfQQ/iPwDPA1ePHfqs+tzYf1SHkX8PeGJM0BvxKcAnCKQTfX7swg/Lsg4B3wQ2m6a5ZczxQvVxNNM009VQ2gdYBD1dE2UJehfH+lL1+GTtWAyvIRiC/hrQZJpm28gfYOQ1u7r6deT//fVjvheEEKcg6dkTYvFlCYYb56Qa3D5JsPBhshDXRNCDuN80zb8hGArtNk3zSYLhye9W5waO+DDBitAHTNM8AtxHMNR35wxW0T5C0KsIQemV/ZZlHZji3Bcn/LsdSAHPTTzRsqxB0zS7Ceb1TfTCJMeer37dOHK7aZrnEgwZX0EwbDzWXo63Z+LztiyrYprmninasRhGwutXT3BOJ4BlWfdXey6vA95pmuZjBCu/v21Z1vMnuL8QYpmRnj0hFt+zQNo0zVkHBtM0NeAugmHNrwNvB15H0PMzMnw7+vNtWdbNBHPn/gLYTbBI5FHTND895pzfEgxdXgN8n2D+1zeBJ03TbJlm0/oty7qn+ueBEwQ95mHO27SZprmWoETKSOB7C0EP2GsIwuVSeS/Uql8/SND2yf6MlL7Bsqx3A1sJ5mMOAP8LeNo0zf++iG0WQtSY9OwJsfi+B1xGELg+PMtrvAx4OfBxy7I+OvYG0zRvmOwO1TmC/wT8U3Xu1y+AvzRN8+9Hhlgty8pX2/e96rXeB3wReC/w2Vm2dbr6CIa3z5p4g2mazUAXwfy6ibYAT004dmb168i8yLcQ9Br+nmVZv5pw7VaCXsiJNpqmGRnbu2eaZpSgV2/nyZ7MAhlZRFKYsPhkSpZlPUvwC8ZnTdNsIuh9/TvTNL9oWZbU8BPiFLBUfpsVYjm5lWCe2E2mab55shNM09xWDVpTGSnMq409aJrm2UyYT2aaZqNpmsbYY9V6byPDn83V89o43uPVr9Pt2Zu1ar26HwPnmqb5ugk3/zXB+9X3j7sjfMA0zcjIP0zTXA28I7ikNfIcp3q9biQoRTOZNMcv2nhf9fgPTvhkZibP9F/fXwC9wF9P1ttqmmbcNM2G6t9bqvMgR1mWlSEYsk4Asbk0WgixdEjPnhCLzLKsommabyKYD/cD0zTvIihDMkAwb+1K4LXAiVbOvkAw/PiX1W3XLILdOP4UeAbYNubcK4F/NU3ze9Xz8tXbbwAesSzLGrmmaZoPE/T8HCHoSfsTgvpy35rr856mDxMMRf7ANM0vEZQXuYxgmPrXHCsTM1aYYJ7hvxPMhfyvBDtVvH/MOT8HisA3TNP8vwT15i4h2OFjN5O/F+4GPloN0DsIXrP3EPTqfWFuT3Och4FXm6b5V8ABQFmWNenrbVlWwTTNawnCplVdebyLYH7mZuAPCML+fcC1BEH4+9VzHOBygu+t71iWVZrH5yCEqGMS9oSoAcuydlUXDPwpwd64HyEYZhwEthPMxbvjBPf3qvXWPlc9N0kwVPduguHdsWHvKYK6bFcQFBXWCULF3zJmflf1728gCEmNBD1IDwOfsixr4jDpgqguJrmIoGbcH3OsqPKnCErNTLbDxrUEAe+vq+c/DVxnWdbdY6672zTN1xM85w8T9PQ9RBB+/i+wfpLrHiIo1Pw54L8QhN5vAjdNLOEyRyND5R/h2MKdKcO1ZVm/qO6w8tcEr1E7QXjdTbD6eaRA9H0EcxTfRBDcPYJevZsInrMQ4hShKSVTNoQQQgghliuZsyeEEEIIsYxJ2BNCCCGEWMYk7AkhhBBCLGMS9oQQQgghljFZjTsLO3bscAmCcrbWbRFCCCEWSRrwt23bJtlhiZH/sNkJAZqu643zdUHPC2q+6ro+X5dcsuS1GE9ej/Hk9ThGXovx5PUYb75fj+r1ZERwCZKwNztZXdcbzznnnHm74EhdW9M05+2aS5W8FuPJ6zGevB7HyGsxnrwe48336/Hkk0/ieZ6MaC1BktCFEEIIIZYxCXtCCCGEEMuYhD0hhBBCiGVMwp4QQgghxDImYU8IIYQQYhmT1bhCCCGEmJMdO3bEgDcClwHxGjfnVFICfg38dNu2beWpTpKwJ4QQQoi5+phhGO+MxWKxcFiixWJxXZdyufwHjuOcD3xoqvPkf0QIIYQQs7Zjx45tuq6/taOjw+/s7NyvaVqtm3TKUErR09PTfvTo0Wt27Njx3W3btj0+2XkyZ08IIYQQc/HaSCTS2NHR0S9Bb3FpmkZHR0e/YRiNwOumOk/CnhBCCCHmosMwDEKhkKp1Q05FoVBIRSIRgI4pz1m85gghhBBiGUroui5dejVUff0TU90uYU8IIYQQYhmTBRpCCCHEMuR6PjKHToCEPSGEEGLZcD2ffNEhW6iwr6dEQ1w+5oWEPSGEEGJJ83xFoeSQK1QYzFYolp1q6PNIRvVaN0/UAQl7QgghxBLj+4pi2SFXdBjMlimUHRzXI2aESSejGOEQR7tlCFcEJOwJIYQQS4BSilLFJVd0GMqVKRQdyo5HJBwiGTOIGrFaN1EssHw+H0qlUv5M7yercYUQQog6Vq649A2VeOlghp37Btl1cIhsziZq6HQ0xWluiBE1ZLh2Iezbty/ywQ9+cO1VV1119tatW887//zzz7nhhhs27t27NzL2vNtvv73VNM1tDz74YPIDH/jAuvPOO++cc88995y/+Iu/WJfNZsdlrUsvvXTrddddd9rPf/7z9Gtf+9ozzz777POuvvrqM3/2s581TnbNBx54IPU//+f/XHf++ee//PWvf/1Zs3ke0rMnhBBC1Bnb8cgVbYbzFYbzNsWyi65rJKMGqeYIIVlluyh27NiRfOaZZ1KvfvWrB1esWGEfPnw4+oMf/KD92muvNf/zP//zuWQyOa6X7ROf+MS6dDrt/smf/MnhXbt2xX/yk5+09/f3G//2b/+2a+x5Bw4ciN18880bf//3f7+vqalp4Ic//GHbTTfddFpjY6N1ySWXFMae+/GPf3xdS0uLc+ONNx5xHGdW//ES9oQQQog64Lg++aLNcCEIecWyA0AiatDeFCcUWloBz3F9rWewYNS6HZ0tSccIz253j9e//vWZt771rUNjj7361a/OXHfddZt/8IMfNL3zne8cHHtbJBLx77jjjhcNI3jabW1tzte+9rWV9913X+qKK67Ij5x3+PDh2Oc+97ldv/u7vzsM8M53vrP/6quvPvuWW25Zdckll7w49pqNjY3uHXfc8aKuz773VsKeEEIIUSOe55MvOWQLNkO5CqWyg+cr4tEwLQ0xdH1pzrZyXF/7k0/dc1Z/phStdVvamuKVf/3Qq5+bTeBLJBKj97FtW8tms6FNmzZVksmk99xzzyWBcWHvmmuu6RsJegA33HBDbzXsNY4Ne+3t7fZI0ANoaWnxXvWqVw3+6Ec/6pg4L++aa67pm0vQAwl7QgghxKLyfUWh7JAr2gwOlymWXRzXJxbVaUxGCYeXZsBbjorFovb5z3++62c/+1nbwMCAodSxvJjP549LYBs2bKiM/XdbW5uXSqW8I0eOjAu9K1eurDDBunXrKr7vc/DgwciWLVvKI8fXrl173LkzJWFPCCGEWGBKKYpll1zRZihbJl9ysR2XaCRMKmEQCS+vBRZGOKT+9UOvfm6pD+N++MMfXvuLX/yi7a1vfWvPueeeW0in056maeqv//qvN44NfgspHo/PePXtRBL2hBBCiAVSLDvkq6VS8kWHsh2USknEDJobaj7CuaCMcEit7miwa92Oubj//vubX/Oa1wx88pOfPDRyrFQqaYVCYdL8tHfv3uhll102Olzb39+v5/N5vaura1zv3MSePoD9+/dHQ6EQa9asmffXTPqKhRBCiHlUtl36MyV2Hcqwc/8guw5lyOQqRAydjuY4zekY0cjy6slbrnRdZ2IP3v/7f/+vw/cn72y788472x3HGf33rbfe2gFw5ZVXZsee19fXF/nxj388WmplcHBQv/fee1vOOuus/Gzq6J2M9OwJIYQQc+S4HrmiUy2VUqFUcQGNRCxMW5OUSlmqLr744sw999zT+uEPf9g77bTTSk8++WTq8ccfTzc0NLiTnW/bdugd73jHGa961auGRkqvbNu2LXvFFVfkxp63atWq8sc+9rENTz75ZG9TU5P7wx/+sL1YLOrvf//7Dy/E85CwJ4QQQsxCsP+sQ7ZQYSgXlEpRBKVSWtJx9CVWKkUc7xOf+MTBUCjE3Xff3fLTn/40dNZZZ+W/8pWvWDfeeOMZk51/8803H/je977X+q//+q+rlFJcffXVA5/4xCcOTDxv7dq15be//e0Hb7nlltWHDx+OdXV1VT7zmc/sHjsEPJ8k7AkhhBDT5PmKfNGuLrQIAp7r+SSiBs0NMcJLtFSKmFxzc7P3hS98Yd/E4w888MAzk52fSqW8W265ZT+w/2TXfv3rX599/etf//xUt1977bUD11577cBM2jsVCXtCCCHECfi+olh2yBUdBrNlCmUHx/WIGWHSySiGlEoRdU7CnhBCCDGBUopSxSVXXUlbKDqUnWAlbTJmEDVitW6iENNW07BnmmYU+DjwLqAZeAr4iGVZ957kfh8DPjrJTT2WZa0Yc951wNdOcKk/tizrmzNsthBCiGWqPCbg5Yo25YqLEdZJxMKkkxE0WWghlqBa9+zdBrwVuAXYBVwH/Nw0zcsty/rtNO7/p0BxzL9LE27/NUGQnOgDwMuBE4ZKIYQQy1/F8YI9afMVhvM2xbKLrmskowYNzbKSVpzcTObXTTXfbyHVLOyZpnkh8EfAByzLuqV67HbgWeDTwGXTuMx3LMvKTHWjZVl7gD0THjcOfAn4pWVZR2fVeCGEEEua4/pBwCsEIa9YDmqjJaIG7U1xQrKSViwjtZxVeg3gALeOHLAsqwx8BXilaZpd07iGZppm2jTNmfxU/i7QAMjwrRBCnEI8z2c4X+FgT44X9g3y4oEhjvTl8X1FS0OM9qYEybghQU8sO7Ucxj0X2GlZ1sSaMo8CGnAO0H2SaxwAUkDONM07gZssyxo8yX3eSTDc+x8zbrEQQoglxRtdSWszOFymWHZxXJ94NExjMkpYVtKKU0Atw14XMFml6JGAt/IE9x0C/gl4GLCBqwjm751nmuZFlmVVJruTaZotwOuAH1iWlZvsnOnyPA/LsuZyiXGKxWDq4Xxec6mS12I8eT3Gk9fjGHktxht5PXbu3EnZ9ilWPLJFl7LtY7s+0XCIWCREWA9RzgUfJMtZpVKhXJ6/zyrP8+blOmLx1TLsxYHJQll5zO2TsizrHyccutM0zWeBLwLXAl+e4q7XABFkCFcIIZYdz1fkih59uRKlik/F9TH0IOA1xGu9HlGI2qnld38JiE5yPDbm9pn4F+CzwKuYOuy9ExgEfj7Dax9H13VM05zrZUaN/OY1n9dcquS1GE9ej/Hk9ThGXotjKo7Hg48+y1DBY83qFXTFDGIR/ZQulZLJ7yIWM+bt++PJJ5+U3r0lqpaTFboJhnInGjl2ZCYXsyzLJxgWbpnsdtM01wKXAt+1LMuZybWFEELUr2LZYe+RYQazNqlYmNbGOPFo+JQOekKMVcuw9ySw2TTN1ITjF1W/PjWTi5mmaQBrgL4pTvkvBAs/ZAhXCCGWiWzBZs/hYQaHyzQmDdm6TIhJ1PKn4k7AAG4YOVDdUeN64CHLso5Uj601TXPz2Duaptk+yfU+SDAE/IspHu8dBKt3H5x704UQQtTawHCJvUeGyRZt2hrj6FIyRdSZL3/5y+233357a63bUbM5e5ZlPWKa5neBz1Rr6u0G3g2sI9hJY8TtwOUEvXIj9pum+S2CAswV4EqCnTgeBO6Y+FimaZ4NvAz4O8uy1Pw/GyGEEItFKUXvUIlDPTk8T9HeGJchW1GXvve977WnUilvurtrLJRaL0+6FvhE9Wsz8DTwBsuyHjrJ/b4JXAK8jWB17b7qdT5lWZY7yfnvrH49LggKIYRYOjxf0d2f53BfgbCu0dIYO/mdhJhH+Xw+lEql/KVyXahx2KvumPHB6p+pzrlikmM3zvBxPgR8aKbtE0IIUT8c1+dQb46jAwUSMYNkzKh1k8Qy96lPfWrlbbfd1vXDH/7w2X/4h39Y9dhjj6U3bdpU/O53v/vi17/+9dZvf/vbHQcPHoxHo1Hv4osvHr755psPrVixwgW49NJLt/b29kYATNPcBrB169b8nXfead1+++2tf/M3f7P+1ltvtb7//e+3/vrXv26Kx+P+Qu2bW+uePSGEEOKkyrbLwZ48vYMFGlNRYhH5+BKL53/8j/+xae3ataX3ve99hw3DUH/3d3/X9fWvf33llVdeOfiWt7ylv6+vz/jud7/b8cd//MfJH/3oR88nEgl10003HfzsZz+7JhqN+u9973u7Adrb28eNPn784x9f19LS4tx4441HHMdZsLkI8tMihBCiruVLDgePZhnMlmlJx2XF7RKhPEdzMr017341mjocTTfmNF//jDPOKHzxi1/cB7B3797IG97whq1/9md/duj9739/z8g5V1555fD111+/+Zvf/GbbjTfe2PfmN78588///M8rU6mU9453vGPSrVwbGxvdO+6440Vd1+fSvJOSsCeEEKJuZXIVDvTkyI+suNUl6C0FynO0A1/6b2d52YHJNk9YVHq6tbL2fV98bi6B7x3veMdoWbef/OQnTQBvetObhvr6+kZz1KZNmyrNzc3OY4891nDjjTdOVQZunGuuuaZvoYMeSNgTQghRh5RS9GfKHOrNUbE92prihGTFraiRDRs22CN/P3DgQMz3fV7/+tdvnezcTCYz7Wy1du3aybaNnXcS9oQQQtQV31f0DBY51JsHFK2NMSmtssRouqHWvu+Lzy2XYdx4PD66Stb3fUKhEF/4whde0jTtuOs2NTVNe0+5sdddSBL2hBBC1A3X8znSl+dIX4FoRKchUfNRQDFLmm6oSOsq++RnLi1r1qyp+L7Ppk2bymN7/CZTL7+kyOQHIYQQdcF2PA4czXKoN08yZtCQiNS6SUuT50ApS6Q8SKiSq3Vrlp03vvGNmVAoxOc///mVE2/zPI+BgYHRSXixWMzL5/MLPynvJKRnTwghRM0Vyw4He3L0Z8o0NUSJGjX/fFw6lAKnDE4JKgWo5MEpkyh0E0ocl0fEHJ1++umV97znPYdvvfXWVW9961ujl112WSYej/sHDx6M3nfffc3vec97uq+//vp+gM2bNxe///3vd3zmM5/pWrduXbm9vd296qqrFj2BS9gTQghRU7mizf7uLMN5m9Z0jLCUVjk5zw3CnVOCUjb46trBxqLhGMQa8EPyEb9QPvjBDx5dv3595Zvf/GbnV77ylZWaptHR0WFfeumlmSuvvDI7ct5f/MVfdB85ciR6xx13rCiVSqGtW7fmr7rqKmux2yvfCUIIIWpmMFvmYE+OQtmhvSlOKFQfc5zqjlLglsEuQaUIlRy4FfBd0A0IRyGagjFzxFo6V5Bq76xho5e+D33oQ0c+9KEPHZnstre97W1Db3vb24ZOdP/Ozk7361//+q6Jx6+99tqBxdwvV8KeEEKIRaeUom+oxMHeHK7r094Yr5vJ7HXDd4Nw55ShXO29cyqABkYkCHf68R/j0VQao7GN5zNx9r9QZHd2LxedtYKGZISIDI+fkiTsCSGEWFSerzjan+dQX4FwSKO1MV7rJtUHpYLeOqcEdhHKuSDo+S6EwmDEIJkAbeph7mgqTZ8T55Ofux/HHanqcYBbf/QsH73hYrasb5HAdwqSiRFCCCEWjeP6HOzJcbAnR8zQaUyd4qVVfA/Kecj1Qf9e6NsF/XtguCeYlxdNQqoNEk1B2DtB0AMwGtv45G3bxwS9gOP6/J9bHyZXXHaVUMQ0SM+eEEKIRVG2XQ725OkdLNCYihKLnIIfQUoFCymc4pjeuwr4TrX3LgqJ5pOGusnEUym27+w9LuiNcFyfR587yutfsWGuz0IsMafgT5oQQojFVig5HOjJMjhcpjkdIxI+hYYSfa86NFsKyqLYxWC4VikIRyCaCBZZzEG+7HGk7LK3u3TC8/YcHp7T44ilScKeEEKIBTWcr3DgaI5soUJbYxxdPwVmELmVINyN9N65laBHT9eD0ijxJgjN7XVwPcXzh0s8tjvP84dLbN3UzstPbzvhfTauapzTY4qlScKeEEKIBdOfKXGoN0fJ9mhvThBarituff9Y3bvySO9d+VjvnRHUvmOOz18pxf5+m+178jyxr0jRPjZk+9L+ft77u2fy73dZkw7lGuEQF561Yk6PL5YmCXtCCCHmne8reoeKHOrNo3xFWzq2/EqruHZ114pq3TunDJ4NIT2oexdvDP4+DwbzLtv35Nm+p0Bfzh09HtLAXBnngo1JzlodJ1wa5Obrzj9ukYYRDvHRGy5eqC3ocq47xURBsSiqr/+UO3NI2BNCCDGvPM/ncF+e7v4CkbBOQ3qZrLj1/Wph42J1W7JCde6dD2Fj3nrvRpRtn6cOFNm+J8+unsq421Y1G5y/McV5G5Kk48cCZSWfpT0F/3zT5Tzy3FEO9BU5bVUjF561gobEgtXZs8rlstPX19fS3t4+uBAPIKbW19fXUi6XHWDKnTkk7AkhhJg3tuNxqDfH0YEiqbhBIja3hQc15zlBuJs49y4Uqvbepeet9w6CHtEXj5Z5bHeeZw6WcDw1eltDXOf8DUnO35hkZfPUPXSVfJZKPssqvx9zcyfm1gVffftVx3E2dXd3v2NoaGhNWPa7WzSu6/rlctlxHOcO4KtTnSdhTwghxLwoVVwOHs3RlynR1BAluhSL9yo/GI61S2DnoTwy984PVswax29LNh+ODNls31Ngx94C2ZI3etzQNbauiXP+xhRndMXQZ7Cd3GBPDyVXYW7dOq9tnWjbtm3ujh07Puw4zi7HcUygYUEfUIyVI+jR++q2bdvcqU6SsCeEEGLO8kWb/UdzDOcrtKZjLKnOHc+pbktWglI2CHduJah1twC9dyNyJY8dewts35Pn8JAz7rbTOqNcsDHFy9cmiEXq/7WsBo1/rXU7xOQk7AkhhJiToWyZAz05CiWH1sb4jHqfakL5QSFjp1r3rlIIevOUH+w1G44tSO8dgOMpnj1YZPueAjuPlPCPjdLS3hDm/I1Jzt+YoiUlH89i/sh3kxBCiFlRStE3FJRWcVyftqZ4/ZZW8dwJe86Wgrl3mhb03sUagqC3AJRS7O2r8NjuAk/uL1B2jiW8RCTEuesTnL8xxbq2yPJbsSzqgoQ9IYQQM+b5iqP9eQ73FQiFNFob47Vu0nhKVVfOlqorZ/PB0KzvBnPvwgsz926s/pzD9j0Ftu8pMJAfXy7lzFVxzt+Y5KzVCcK6BDyxsCTsCSGEmBHHDUqrHO3PE4sapOJ1suJWKUJuCXK9x3rvnEq19y4ShLsF6r0bUbJ9ntgXBLy9fePLpaxpjXD+xiTnrU+Sii3BxStiyZKwJ4QQYtoqjseBozl6Bws0JqPEonXwMaJ8KOeI5I4QcgpgFI713iWTC9p7B0Ev584jJbbvKfDswSJjyws3Jo6VS1nRtCAFjYU4qTr4KRVCCLEUFMsO+4/mGBgu0ZKOEQnXuHfK94OdKwqDUBpGr+TwjTikTrw/7HxQSnF4yOGx3Xke31cgXz6W8CJhjZetTXDBxiSbOmOE6n3Bilj2JOwJIYQ4qeF8hYM9ObIFm/bGOLpew3IgE0IeSkE0iRdLL/hDDxfdarmUAt2ZY+VSNGDTihgXbEzysrUJokb9l0sRp46ahj3TNKPAx4F3Ac3AU8BHLMu69yT3+xjw0Ulu6rEs67hdnk3T7AI+AbwBaAEOAz+0LOt/zukJCCHEKWBguMTBnhyliktbY7x2PVVjQ14xExyLJoP5eAvIdn2eOVjisd15XjxaRo0pl9KRDnPBaSm2bUjSnJT+E1Gfav2deRvwVuAWYBdwHfBz0zQvtyzrt9O4/58CxTH/Lk08wTTNdcBDQBb4AtAHrAHMObRbCCGWPd9X9A4VOdybx/MVbY3x2pQG8X0oZ4/15MGChzxfKfb0VHhsT56n9hepuMcSXjIa4rz1Sc4/LcmaFimXIupfzcKeaZoXAn8EfMCyrFuqx24HngU+DVw2jct8x7KszEnO+VfgEHClZVnHhUEhhBDH8zyfI/0FjvTlMcI6Leno4jfiuJCnqvXwFm71b++ww/Y9ebbvLTBUOLZtmR6Cs1YH8/A2r4xLuRSxpNSyZ+8awAFuHTlgWVbZNM2vAH9jmmaXZVndJ7mGZppmGshZlqUm3mia5hbgauANlmWVTNNMALZlWVPuHyeEEKc6x/U42JPj6ECRVNwgEVvk0iqLHPIKFY8n9hXZvifP/n573G3r2iJcsDHFOesTJKNSLkUsTbUMe+cCOy3Lyk84/ijBXNdzgJOFvQNACsiZpnkncJNlWYNjbn919WvFNM3twDbANk3zR8D7LMvqm+NzEEKIZaVccTnQk6MvU6IpGSUaWcSAs4ghz/UULxwJ5uE9f7iEN6ZcSnNS5/yNKc7fmKQjXSc1BIWYg1qGvS6ChRITjQS8lSe47xDwT8DDgA1cRTB/7zzTNC+yLGukkuWm6tfvAHcBnwLOBD4CbKie6zELnudhWdZs7jqpYjGYejif11yq5LUYT16P8eT1OGa+X4tixaNnqEKu6JJOGJSzizRUqXx0u0C4kiVk5wGFbyRQoTBkKye9+4hkYyPRaJSSbZMZGDj+YZTiaFbxXLfPCz0+pWOLaYnoYHaGOKsrxJomDU0r4RVKdBfm4fnViOu62HZl3r4/PG9WH5eiDtQy7MWByX6Ky2Nun5RlWf844dCdpmk+C3wRuBb4cvV4qvr1Mcuy3lH9+/dM0xyonvsm4IezaLsQQiwruaJLT6ZCqeLRlDQWZ8XtSMgrDwfFkMeGvBlo6uikddUGtlt97D9UYF1nA+efezoDh/eS6e0hW1Y83+3zbLfH4JglfRqwvlXjrK4Qp7eHMGQenlimahn2SsBkM35jY26fiX8BPgu8imNhb+Qa/z7h3G8ShL1LmGXY03Ud05y/Bb0jv3nN5zWXKnktxpPXYzx5PY6Zj9dCKUVfpkShN0er4dOSjhFa6NWlvg/l4WC4NuRALA6xjlkN10ZTafqcOP/98w/ijNm64rawxYeuPZ/ddoj/eHA/Yyd1dzUZXLAxyXkbkjQmal2UYuHszQwSiUTn7WflySeflN69JaqWVR+7CYZyJxo5dmQmF7MsyycYFm6Z8BgAPRPOHSboVWyeyWMIIcRy4vuKI/159nVn8T2CGnoLGfR8D4pDMLAX+vcF8/NiKUi2zHpentHYxidv2z4u6EGwf++nbt/OxeesRdMgFQtx+ZYGbnpjFx98UxdXntW4rIOeEGPV8jv9SeDPTdNMTVikcVH161MzuZhpmgZB/bzHxhzeUf26asK5bQS9irJAQwhxSnI9n8O9eY7054lHwqQSC1iY2PfGLLzIBuOnsdScF17EUym27+w9LuiNcFyfF/YM8FfXbKI1YqPLtmXiFFXLnr07AQO4YeRAdUeN64GHLMs6Uj221jTNzWPvaJpm+yTX+yDBEPAvxhy7D+gHrjdNc+xzvbH69Z45PgchhFhyKo7H/u4sh/vypOKRhQt6oz15+8b35CWa52WFbdgw2NedO+E5h/sLbOxKSdATp7Sa9exZlvWIaZrfBT5T3c5sN/BuYB3BThojbgcuJ/hdcMR+0zS/RVCAuQJcSbATx4PAHWMeo2ya5l8BXwF+YZrmD4AtwJ8BP7Us65cL8+yEEKI+FcsOB3pyDAyXaU5FiRgLUFplpCcvPxh8naeevIls22FVe+qE56xfkcJznBOeI8RyV+udmq8F/rH69QsEPX1vsCzroZPc75vAxcD/Af4B2Eqw9+3VEwsmW5b1VYK9d1dUz/0Dgu3Z3jZvz0IIIZaAbMFmz+FhBofLtKZj8x/0Rnry+vcFfyrz25M3VqHi8Y8/3M2Wja0Y4ck/yoxwiAs2d1DKTyznKsSppaazUy3LKhMMv37wBOdcMcmxGyc59USP82/Av820fUIIsVwMDJc42JOjVHGDhRjzOaw52pM3AOXcgvXkjTgyZPOV+/oYzLv88P7d/NW7tvHpb+wYN3fPCIe4+brzsYf7F6QNQiwlshRJCCGWMaUUPYNFDvfm8XxFW2Mcbb5W3E4a8hpAX7iPlif3F/j3hwawPYWha2xosFkZK/PPN13Ooy/0sL+nwPoVKS7Y3IE93E8ln12wtgixVEjYE0KIZcrzFd39eQ735jHCOi3pyUqbzkINQp7vK37+VIZ7ng3CW3NS571XdLCqJUIln6WSz7I+ZnP6GVEakpA7vGfB2iLEUiNhTwghliHH9TjUm6e7v0AybpCMzcOQqu8Fe9YWRhZeaAse8gBKts83HujjhSPBBkubOqO8+7J2UrHxcw5HtkgLd01WwlWIU5eEPSGEWGbKFZcDPTn6hoo0pWJEI3NciDFpyEsveMgDOJqx+ep9ffTlgrV3l21u4Pe2NUspFSFmQMKeEEIsI/mSw8GjWQZzZVrS8SlXqk6L7wZFkPODwcraRQx5AM8cKPLNh/qpuIpwCP7w4lYuOO3EpVaEEMeTsCeEEMtEJlfhQE+OfNGmrTEx+96v40JeaFFDnq8Udz09zC+eHgagKaFz/RXtrG2dpzmHQpxiJOwJIcQSp5SiP1PmYG8W2/Zpa5rlHrc1DnkAZdvnmw/18+yhEgAbOqJcf1k7DfEFKP4sxClCwp4QQixhvlIcHShyqDePBrQ2xmZeWqUOQh5Ab9bhq/f10TMc7HhxyRkpfv/8FsK6zM+bjZbOFaTaO2vdDFEHJOwJIcQSVXF8BnM2w06WaESnYaZ73NZJyAN4/nCJbzzQR9lR6CG45sIWLj69YdHbsRykGlI0NaVoLh3EO/AAw/YhkqdfQCjRQCi8QPsgi7omYU8IIZYY2/EYGC5zoLdEseKxpd0gHp3B2/loyBuASq6mIU8pxb3PZvnZkxkUkI7rXH95O+vbZX7ebKQaUqRUju4v34zygh7SPDB4922sePuHia7ZLIHvFCRhTwghlgjX8xnMlukdLDKcr+D7ipbUDILeaMjrh0q+piEPgp7Jf//NAE8dKAKwri3C9Ze305iQj6bZampKjQt6I5TncPTbf8ua932RULq1Rq0TtSI/UUIIUed8X5HJV+gZLJDJVQjrIdqaEpRzSzPkAfTngvl53ZkglFx0WpJrLmqV+XlzEE+lKO3ecVzQG6E8h8JL22nc9tpFbpmoNQl7QghRp5RSZAs2vUMlBodLKKA5FSM83dp5nlsthjwyXKvXPOQBWEdK3P5AP0XbJ6TBWy5o4ZIzUvO3Z++ppJyFoUNoQ4cJd6zAqeROeLrds29x2iXqioQ9IYSoQ4WSQ+9QkYHhMrbj0ZiKEjWmWX5kspAXb4JQbcuXKKW47/ksP34ig1KQioa47vJ2TuuM1bRdS4bnQvZoEO4yh2DoMFo5O3qzr15GbP3WE14i0rl+gRsp6pGEPSGEqCPliktfpkRfpki54tEQj9CUmuZihToNeQC26/Pt3w7w+L5gft7qlgjvuaKd5qR8DE2pNAyZw2hDh2DoEGSPovnecaepUBiaVlLUUzSffgGZB74z6VCuphskTz9/MVou6oz8lAkhRB1w3GCFbc9gkVzRIRUL094Un97Q5sSQFwrXTcgDGMy7fPX+Pg4P2gBs25DkDy9uITKXrdyWG8+F4e5j4S5zCK08+ZCsijdB82pU0ypoXg3pztH/60yuQvs1f0XfnZ8eF/g03WDF2z9MKCHlbE5FEvaEEKKGPM9nMBssvsgWbKKGTkdTnNB0tjpTCr2Shf5KXYY8gF1Hy9z26z4KlWB+3u9ta+ayzQ2n9vw8pY7Ntcscnlav3Wi4a1oNsan3B87n8riJJJ03fJ7Sru14g4eJdm4gefr5UmfvFCZhTwghasD3FcP5Cj1DRYayZfRQiNZ0DF2f7uILB6PQS7icgWRn3YU8pRQPWDl+uH0IX0EyGuLaS9s4oyte66YtvtFeu0PVIdnDaFMspFCJZmhahWpeHfTaNXRM6//V9RTlikvFcYkUHfK5PCHSxE/fRMfpW+b7GYklRsKeEEIsIqUUuaJDX3XxhacUTakYxkyGNCt5GD6KURrAMxIQb1y4Bs+C4ynufGSAR3cXAFjZbPCey9tpbTBq3LJFoFR1rl2wQpbMIRg+iqb840/VDWhcCc3VcNe0CqJT99pN5PmKsu1SsT30kEYsGqa1MUUyYRCPhDlg7acYApCwd6qTsCeEEIukWHboHSoxkClRcTzSyQixyAzehpUPhUHI9oJTwo2mg5p5dSRTcPna/X0cGAjm5527LsHbf6eVqFFf7Zw3nhP02g1Ve+0yh9Eq+UlPVYnm6nDsamheBQ2dEJrZ6+IrhW17lGwPUMQiYdqbE6QSBslYGH2G1xOnBgl7QgixwMq2y0CmRF+mRKHs0BCP0DjdFbYjPAeGeyDfB7oOyRbIHV2YBs/Snt4yt93fR67sowFvPK+Jq85ML5/5eSO9dqOlTw5BtmfqXrumVceGZJtWQTQ564e2HZ+S7eK6HrFImKaGKOlEhETckIUu4qQk7AkhxAJx3GB7s56BArmSQyIapqMpMfPwUykEvUfFTDA536i/unS/eTHHfzw2iOdDPBLiXa9sY8uqJT4/bya9dskWaFp9LNg1dMy41+64h/cUpYpLxXUx9DDJWJh0KkkyFiZq6MsnRIsFJ2FPCCHmmecrMrkyRweKZHIVohGd9sZprrAdS/lQGIJsDzglSDbX1SIMCBYG/Mdjg/z2pSAErWg0eM8V7bSnF39+XlNrK5FolHgySSk/eSibklJQyozuRkHmRL12kTErZKtDspHEvDwHz1dUbJfyyDy8yPh5eDP+HhICCXtCCDFvlFIM5216B4sMZsuENI3Wxhjh6a6wHctzINcbzM8LVYdt66wnZ7joctuv+9nXVwFg65o477ikjdgiz89LNaRoakpRfGk77qGDGO1raT1tG5lMnnxuitDn2sevkLULk56qki1jgt1qaGif17mSSilsOximVajglwOZhyfmkYQ9IYSYB7miTd9Qkf7hMp7n05iMEpnu9mYTVQrBtljFoWB1Zh0O2+7vq/C1+/sYLgW14V7/8kZevbWR0CIH0lRDipTK0f3lm8cVEc788hu0X/NX0NBAPpsLXsuxde1yPWhKHXc9FY5A46rxK2TnqdduItvxKdsuTnUeXqPMwxMLRMKeEELMQbHs0F9dfFGxPdKJCLHoLN9alQpCyfDRYNg2UX/DtgCP7Mrz3UcG8HyIGhp/fEkbZ69ZmEB0Mk1NqeOCHoDyHPru/DRd7/5bCt//PFplql671qDXbnSu3fz22k00cR5eIhYmnUyQjBsyD08sGAl7QggxC7bj0Zcp0jdUolBySMUjpJsis/+wHhm2zfUFw7V1OGzr+YofbB/iQSsoCNyeDvPeKzrobKxN/bx4KkVp945J94GFIPCV9z5FvGsj5X3PoMLR41fIRhZ+Eclk8/BaGlOk4gaxaBhd5uGJBSZhTwghZsD1fAare9hmCxXiUYP25sTchi/tYtCbVxys22HbXMnj67/uY3dvMD/vzFVx/viVbcQjtRtuDBsGTt+BE55jDx0ltOVK/LWvgFTbotUlHDsPz1eKWLQ6Dy9ukIiFZzePU4hZkrAnhBDTMLLCtncoWGEb1kO0NSXm1iszOmzbA3YBEk2g19/b8sGBCl+9r49MMZif95qtjbzu5Ys/P28c18bd/wSJps4Tnma0r6OYXgWhGa7OnSXb9SlXXBzPJ2roo/Pw4tVyKULUQk3fVUzTjAIfB94FNANPAR+xLOvek9zvY8BHJ7mpx7KsFRPOPX4GbuDPLMv6lxk3WghxSlFKkS3Y9AwGe9gqoDkVIzzXCfSeC7meY8O2qda6G7YF2LEnz7cfHsTxFJGwxjsvaeNla2szPw8IXrcDj6PtfpCKXaL13X9DRjcmHcrVdIP4aecxcHBhi097nqJkB/vSHpuHF5F5eKJu1PpXyNuAtwK3ALuA64Cfm6Z5uWVZv53G/f8UKI75d2mK834B/NuEY4/MpKFCiFNPvuTQN1hkIFvGdjwaU9H56Z2xi0HtvMIgRBNg1F/xYc9X/OTxIe57IZif19YQ5j2Xt9PVHKlNg5QPh55Be+l+tNJwcCgUJrPnBdrf+pf0fe8z4wKfphu0X/NXZDIL06Pn+4qy41GuuOghjWgkTEta5uGJ+lSzsGea5oXAHwEfsCzrluqx24FngU8Dl03jMt+xLCszjfN2WpY1MewJIcSkyhWX3qES/ZkipUqwh23TTLc3m8xI4d7ho0F5lTodti1UPL7+635eOloGYPPKGO96ZRuJaA2GIZWCozvRXrwPLd8fHNJCsOYc1OmXko+lIZSi68ZbKO7agdsf1NmLn3beievszaop1Xl4jovvB/Pw2priNCQiMg9P1LVavstcAzjArSMHLMsqm6b5FeBvTNPssiyr+yTX0EzTTAM5y7KmGq4FwDTNOKAsyyrPteFCiOXJcT0Gqosv8iWHZMygo3kOK2zH8tzqatveuh62PTxo89X7ehksBPPzrjorzRvPaVr8nRuUgv49aNav0IaDjwIFsPJs1BmXB6uVq/K5INSVtHaM1atpSCbndeh2dB6e6xON6KSTEdKJKIm4zMMTS0Mtw965BD1uE3/tehTQgHOAk4W9A0AKyJmmeSdwk2VZg5OcdwPwfoJw+AzwUcuyvj+Xxgshlg/P8xnMVugZLJAt2MEOBk3x+VuAYJeCIsmFAYgkF6Xcx2w8sa/At34zgO0pDF3jj36nlfM2JBe/IUOH0Hb+Em1w/+gh1XE6yrwS0lMvyMgMDAAQ7uqacxNG5uHZjoeuh4J9aZMREjGDWETm4YmlpZZhrws4PMnxkYC38gT3HQL+CXgYsIGrCObvnWea5kWWZVXGnPsb4NvAXmAN8OfAf5im+Q7Lsv59to33PA/LsmZ79+MUi8HUw/m85lIlr8V48nqMN5+vh68U+ZLHUM4mWwxqoCVjOqWQRmbOVweUQrdzGMUBQm4ZN5KEkAPzc3Vs2wagu/tkvxefmK8UD+z2eGRfsA9sOgZveblOZyxLd3d2zu2crnBxgHT3DuLDx8qpVFJdZFeej53qhIIPhamf61xfD1+B4/hUXB9Ng6gRIhnViUZ1qITIORq5WV25NiqVCipcnrf3Ds/z5uU6YvHVMuzFgcokx8tjbp+UZVn/OOHQnaZpPgt8EbgW+PKYcy8Ze6Jpml8nmBf4GdM0v3Wy4V8hxPKjlKJY8RjMOWSLLsqHhrg+v3OufI9waYhweRBNKdxoui6HbcuO4sfPuuwdCN4K1zZr/N7WMInI4rVVLw+T7n6c+NBuRh7VTrSRXXk+lYZVC/q6KQWOp7AdD19BJKzRlAoTj4aJGSF0vf7+z4SYqVqGvRIw2Yzn2JjbZ+JfgM8Cr2JM2JvIsqyCaZr/AvwdYAI7Z/g4AOi6jmmas7nrVO0CmNdrLlXyWownr8d4c309CiWHvkyJQqZEIu3R1RUlGpnneVcjw7YhBc0Lt7fqSA9W1yyHLbszNnc80kd/Lgh6l21u4Pe2NS/eStJyFu2lB+DgE6P71KpUG+qMKwiv2EzLDEPeTF6PsfPw0hE9KJeSiJKIhef/+6FG9hWHIRabt/eOJ598Unr3lqhahr1ugqHciUaOHZnJxSzL8k3TPAy0nPRkOFj9Op1zhRDLQNl2gz1sh0oUKw4N8QiN87HCdqyR1bbZHqjkId5Ul6ttAZ45UOSbD/VTcRXhEPzhxa1ccFpqcR7cLqLtegj2b0fzXQBUvDFYeLFq64LtcjFaD8/2CIdDxKNhVrTKPDyx/NXyXehJ4M9N00xNWKRxUfXrUzO5mGmaBsGcvMemcfrG6te+mTyGEGLpcVyfgeESvYNFckWHRCxMR1Ni/j/YfTcokJzrC2rCJetzta2vFL94epi7ng5q1TUldK6/op21rfMcfCfjVmDPw2h7H0Zzg/l1KppEbboU1py7IMF4tB6e7RJCIxYN09IWIxkLE48ZUg9PnBJqGfbuBG4iWCl7C4zuqHE98JBlWUeqx9YCCcuyRodbTdNstyxrYlD7IMEQ8C/GnNdmWVb/2JNM02wF3gfstSzrpfl+UkKI+uB5PkO5Cj2DRYbzFSJGdYXtQny4O6Vgy7PCQLDSdoGGbeeqbPt886F+nj0UzJLZ0BHl+svaaYgv8LCl58D+HWi7H0KzgwU2KhxDnfY7sP5CCM9voWalFLZT3Zd2pB5eOk4qGSEp9fDEKahmYc+yrEdM0/wuwUKJLmA38G5gHcFOGiNuBy4Hxr5D7zdN81sECy0qwJUEO3E8CNwx5rz/bprmm4GfEJRpWQX8CdAB/P78PyshRK35vmK4UKF3sMhQtkJI02hJxxbuA76YCebnVfIQbwTdWJjHmaPeYYev3NdLbzYYNr3kjBS/f34L4YVcgOB7cOgptJd+jVYO1rEq3YD1FwZBb553DvF9KNseg9kKUSOoh9eQiJCMGctmHp4Qs1HrySTXAp+ofm0GngbeYFnWQye53zeBS4C3ARFgX/U6n7Isyx1z3m+q591IMD8vD/wW+NtpPIYQYonJFW16q9ubeZ5PYypKJLxAH/K+Vx227QXl1e2wLcBzh4r824P9lB2FHoJrLmzh4tMbFu4BlYLu59BevB+tEJQ+VVoI1m5DbXolxOZ/bqDt+uTKLoloiDWdKeIxg7jMwxMCqHHYq+5m8cHqn6nOuWKSYzdO8/p3AXfNtn1CiKWhWHboGyrRnylRtl0ak1Fi0QV8e3PKwZZno8O26YV7rDlQSnHPs1l+/mQGBaTjOtdf3s769gWan6cU9O5Ce/FXaNme4BAarN6KOv3yYHu4BVCsuJQrLo3JMC0NBq2N9Vm0WohaqXXPnhBCzFrF8ejPFOkbKlEoOaQSETpTC7zjQ2k4CHrlHCTqd9i24vjc8ZsBnj4QzJFb1xbh+svbaUws0Nv+wP5ga7Ohg6OH1IrNqDOugIb2BXlIpRS5ogNodLUmyYcLi7+tmxBLgIQ9IcSS4/mK3sEiRweL5AoVElGD9ubE/G1vNpmRYdt8X7DyNtWyYCVC5qo/5/DV+/rozjgAXLQpxTUXLtD8vOHuIOT17R49pNo2BlubNZ1oI6S58bxgbmY8GqazJUE6GaGYk6AnxGQk7AkhlgzP8xkuOAzmHDJOhkhYp60psfDlM5xyUDsv3w9GDBLNC/t4c7DzSIlvPNBP0fYJafAHF7TwijNS8z93Ld+PZt2HdvSF0UOqaRVq81XQun5+H2sC2/HJlWwakxE6WxIkYvXZuypEvZCwJ4Soe57nk8lX6B0qcrCvjAasb4gRDi9Cz1ppOCirUs7W3bBtU2srkWiUeDJJMZfjvuez/PiJDEpBKhbiusvaOa0zdvILzUQxg/bSr+HQ02hUd71o6Ah68jpOX/BFKoWyg+N4tDfGaG9JElmM7wEhljgJe0KIunUs5JUYzlXQNEjFgj1sFzzo+T4U+oMePc+pq2HbaCqN0djG888fZf++AhtWwJkb1zPo7UKpDKtbIrzninaak/P4Fl8poO16EA7sQPODLbNUojnY9WLl2Qse8nylyBUc9JBGZ2uS1sa4FEQWYpok7Akh6o7nKzK5Mn2ZEplsBTRIpyJEwjr5zCIELqcS1M4r9EM4Bsn62VkxmkrT58T55Ofux3H90eNGOMT/fMd5rG+PsrXdnb8eL6eMtue3sPcRNC+YA6iiDagzLoPVL4fQwtev8zxFJl8mGTPoaE3SmJzfIsxCLHcS9oQQdWNsyBvOVYJyIdWQt2hK2SDolbMQS8/77g5zZTS2HRf0INgW7h/ueJwv3XQ5+cN75v5AngP7HkXb/Rs0pwyAMuKoTZfAuvMXbTi7Ynvkyw5NDTE6WxLEF7KkjhDLlPzUCCFqzvMVw/kKfUNFMrkKStUg5E0ctk3Wz7DtiHgqxfYXeo8LeiMc12f7zl7O7UpRyucnPeekfA8OPIG26wG0SnANpUdg40WoDb8DxiLsoVtVKDnYrkdHc4KO5rhscybELEnYE0LUzKQhLxkhYizy1lZu5dhq23CkroZtR+RKHntzDnuPlk943r6jec5fO4vVwsqHw88Gu16UMsGhkA7rLkCd9gqILnD9wjF8X5Et2oT1EKvaUzQ3xKR+nhBzIGFPCLHo6ibkQVAcebi7bodte4Yd7ns+y/Y9ec46rZ2Xn952wvPXr0jhOc70H0Ap6LGCMir5vuCQpsHqc1CnXxrs97uIXC/43kjFDTpaE6QT9fX/IcRSJGFPCLFoPF+RzVfoGyoxlCvjK2isVcjz/WC7s1wPuA4kWiBUH8OESil291T41fNZnj9cGj2+68AAN/zemfz7XdakQ7lGOMQFmzvITXfOXv9eNOuXaJkjxx575VnB1map1jk/j5mqVDzyZZvmdDA/LxaRjygh5oP8JAkhFpw/0pOXKTGUq+ArRToRIVqLkAfjh231CCTro0iy5yue2l/kV89nOTRojx5vTYW5fEsDF56WQi8OcvN15/PJ27Yftxr35uvOxx7uP/kDDR0OQt7AvtFDquP0YGuzxhXz+IymL1908HyfzpYk7TI/T4h5JWFPCLFg6i7kQV0O25Ztn4d35bn/hSyZojd6fH17lCvPTHP26vjonLVKPkt7Cv75pst59IUe9vcUWL8ixQWbO7CH+6nks1M/UK432Nqs58XRQ6plbVAQuWXtgj2/E/F9xXDRJhIO0dWaojkVlfl5QswzCXtCiHnn+8G+pcFwbQXf90kno7UNecqH/MiwrV0Xw7ZDBZdf78zx8Es5yk6wG4UGbF2b4Moz06xvn3zlayWfpZLPsj5mc/oZURqSnHjotjiE9uL9cPgZRmKUSq8IQl77aQteEHkqjueTLVRIxSOsaEmQkvl5QiyIOYc90zTjAJZllU52rhBieRsb8jK5Cp7vk05EiUZqGPIgCHfZHsj3BfXharza9uBAhfuez/Lk/iJ+kPGI6BoXbkpx+ZYG2hqmV8MuMzAAQLira/ITyjm0lx6Ag0+gqWDIVyVbUeYVsGJLzUIeQKniUqq4tKTjdDYnav89IsQyNquwZ5pmB/Ax4PeBzuqxXuD7wP+xLKtnntonhFgCfF+RLdjBcG22jOv7NNZDyIPqsG0PlDMQa4Dw4tWJG8tXihcOl7jv+Sy7eiqjxxviOpeaDbzijBTJ6Mxer7F7446rq2cX0Xb/BvY9hua7AKh4I+r0y2DVy2rao6mUIl908VGsaE3S1hRDr5OFMcuJ8tygN1sIZhH2TNPcADwIdAEW8HD1pi3AfwXebJrmpZZlzUMJdyFEPavrkKd8KAwGu2E4NiSaF2Vrr4kcT7FjT577XsjRM3ysJEpXk8EVZ6Y5b32SsD6zHrZUQ4qmphTFl7bjHjqI0b6W1tO2kRnIkH/qbrQ9v0Vzg0CpIgnUpkth7Xmg13bmjlft+Y1FdLqaUjQ1RNBq2Lu4HCilwHPxXRvlOijPAaXQ9HDwi01IZmuJ2fXs/T3QCvyBZVk/GHuDaZpvAf4d+BzwB3NunRCiLo0LebkyrueTTkTqp1SG58Dw0epq23Cw2naRQ0W+7PGbF3M8YOXIl4/1sJzRFePKM9OYXbFZBZ1UQ4qUytH95ZuDD/aqzC+/Qfub/xxNtym4FVQ4itr4O7DhorpYhGK7PrlChcZUlI7mBMn44my3tpwopVCeE4Q610a5Lmig6TqaHiEUSxKKpdAjUTQjCk5s0ba1E/VtNu/MrwK+ODHoAViW9X3TNP8ZeM9cGyaEqD9KHQt5g9kyruuTTtZRyAMo54PevGIG4os/bNuXdbj/hSyP7i7geMGEvJAG521IcsWWNKta5ha8mppSxwU9AOU59P3wH+l618fJO1qwtVkkPqfHmi/Fiku54tLWFKe9OVHbhTpLhFI+ynWDUOeN9NhBKGxAOEIo3kAolkSPxNDCUTQjghae0FNaByFf1IfZvEMr4KUT3P5i9RwhxDIxEvL6MyUGsxUc1wtCXkMdhbzRYdsecCpBb94iDdsqpdjTGyy6eO5QafQNMGZovOKMBi7d3EBTYu6vVTyVorR7x3FBb7QdnkPp8EvEtv3e7PfGnUdKKXJFB9Doak3SKvPzJhUEuzE9dp4LmhYEOz0IdnosRSgSQzMihIwYWlh67MT0zebd537gSuBfprj9CuC+WbZHCFFHJg15iQjNDbVZ5DAlzwkWYeT7FnXY1vMVTx8oct/zWQ4MHCuC3JLUuWxLmos2pYgZ8xduwoaB03fghOc4/QfRO8+et8ecLc8L5ufFo2E6WxKkkzI/D0D5Psqzj4U7P6irGApHIGygp5rRY4lqb12UUCSKJkOxYo5mE/b+ArjPNM2/Bz5tWVYvjK7Q/WvgIoLAJ4RYopZMyAOo5IP5ecVMsNrWWPg2lh2fR3bl+fULWQYLx4ogr22NcOVZabauSaAvQGFgd+AwieYT73BhtK2lOJO9cReA7fjkSjaNyQidLQkSsVMzrCjfG99j53toIQ1Nj4ARIRxPEYomg1BnBOFOq/EiGrE8nfS7yjTNyVbVxglC31+YppmpHmuqfh0A7gVOm3vzhBCLaWzIG8pVsJ06DnnKh8JQddi2tCjDtpmiywM7c/zmxfFFkM9eE+eKM9NsaI8uTO+VU0HbeS+Vg0/Q+u6/IaMbkw7larpB/LTzGDh4dP7bME2FsoPjeLQ3xmhvSRIJnxrDtkGwG99jp4VCwTy6sIGeSBOKJY4Fu3BEgp1YNNP5TjuAzMETYlkbmVvVnykymK1QsV3SyShNqToMeQC+C5luyPWCrgdFkhdwiPDwoM19L2R5fG9htAiyoWtceFqSy7ekaU8vYM9Vz0toz/4MrRxsg5Z55gHa3/pB+r732XGBT9MN2q/5KzKZ2szV85UiV3DQQxqdrUlaG+ML0rtZD5TnVsucVMOd76OFdLSwgRaOoKeaCEWDodigxy6CVoOyP0KMOGnYsyzrikVohxCiBpZcyANCbhmj0A+hGESTYMQW5HGUUuw8Uua+57O8eLQ8ejwVC1WLIDeQii3gB3ilgPb8XWhHng3aEwqjzCvJd54LoTRdN95CcdcO3P6gzl78tPPIZPLkc4sf9jxPkcmXScYMOlqTNCaXzyrQINjZx4ZiUWihMJpuoIVj6A2thCLxY6EuLMFO1B/pQxbiFDQ25A1lK5Rtl3SivkMeAJU8Rr4H3SlCYsWCDNu6nmLH3gL3v5ClO3Os56yz0eCKLQ1s25jCmGER5BlRCrqfQ3vuF2h2MTjUuh619Y2j27zlc0GoK2ntGKtX05BM1mzotmJ75MsOTQ0xOlsSxKNL92NlpCixcm18N9iBQtPDQYCLxtDTrYSicULVxROaEUHTTo1harG0zfqn0jTN04A3Axurh/YAP7Qsa/d8NEwIMf+UUuRLDv1DQZ28kZDXWO8hD4L6eZlD6E4RN9ow70GvUPH4zYt5HrBy5ErHFl1s6oxy5VmNbF4ZI7TQq0lL2WDItjeobqXCUdSW18CacyYdpj7p3rgLrFBycFyfjuYEHc1xwvrSCD6T7jrBseLEWjSB0ZgKatiNLJwIGxLsxJI1271xP0Gw8nbiu+1nTNP8W8uy/vecWyaEmDejIS9TYnC4TMXxaIhHlkbIg2B/26FD4JRwo+l5nZ/Xn3O4/4Ucj+7KY48pgnzu+iSXb2lgTesivEZKwcEn0F6459g2Z51noM5+Q7DCuM74viJbtAnrIVa2J2luiBGq0/l5x+064QV7BYf0cLU4cerkxYmFWOJmszfue4CPAL8BPgM8V73pLOCDwEdM09xjWdZt89VIIcTsTBbyUnFj6YQ8gNIwDB0BtxTsb5udn+HKfX0VfvV8lmcOFMcVQf6d04MiyM3JRRqOLAyiPf0TtMH9QHUv27NeB11nLvoWb9PheorhfIVU3KCjNUE6UWfz8zwHr5Q/tusEUxcnDkqdGBLsxLI3m3ez/wY8AlxhWZY75vhu0zR/BjwA/A/gtrk3TwgxW/lidVuzpRryIKidlzkCXiUIenP8UPZ9xTMHi9z3Qo59fZXR481Jncs2p7l4U4pYZJGG6nwf9j6C9uJ9aH7wVqpWbUWdeTVEEovThhmqVDzyZZvmdDA/r562yfPtclCKRw9DKIQea0SPJY8VJ64OxQpxKprNT+oW4EMTgh4AlmW5pml+C/jUdC5kmmYU+DjwLqAZeAr4iGVZ957kfh8DPjrJTT2WZU1ZcdQ0zYuA3xKUxmq2LCsznXYKsZTkizb9w2UGhkuUKx4NiSUY8gCKQ9Wg50C8aU5Br+L4PLo7z/0v5BjIH3vrWt0S4coz07x83cIUQZ5Stgft6R+jDXcDoGLpYAFGx6bFa8MM5YsOnu/T2ZKkvY7m5/mOjVfMEgpXd05JNBFfs1l2nRBijNmEPRtIneD2huo503Eb8FbgFmAXcB3wc9M0L7cs67fTuP+fAsUx/y5NdaJpmhrwher5yWm2T4glY2S4diTkpRIGHc1LdO5RYRCGj4DnQqJp1pcZLro8aOX4zYt5irY/evys1UER5NM6FqgI8lQ8F23Xg7D7ITQVtEetOx+1+SoI12cg933FcNEmEg7R1ZqiORWti/l5ynXwisOghQinWzEa28HtBk2ToCfEBLMJe48Bf2qa5q2WZfWMvaG6ZdqfEAzznpBpmhcCfwR8wLKsW6rHbgeeBT4NXDaNtnxnBr1z7wY2AV8B3j/N+whR98aGvIrtkYwv4ZAHkB8Igp7yZx30uoeCIsg79hbwqhkvHIILTktx+ZY0nY01CANDh4LevHw/ACrZgnrZ70LL2sVvyzQ5nk+2UCEVj7CiJUGqDubnKc/FK2ZBKUKpZozGdvRkY7BSVqvdziFC1LPZhL1PEGyH9oJpml8Bnq8ePwu4nqBn753TuM41gAPcOnLAsqxy9Zp/Y5pml2VZ3Se5hmaaZhrIWZY15S4fpmk2EAwtfwxonUbbhKh7+ZLDQDXklWyXVCxCumkJhzyloDAQDN1qQLxx0tOaWluJRKPEk0lK+fyYuytePBoUQd555FgR5GQ0xCvNBi45o4GGeA2K3bo2mvUr2PcoGqA0DTa+AnX6ZcH8sjpVqriUKi4t6TidzQmikdoWCla+F4Q83yOUbMJIt6GnmqSAsRDTMON3Gsuyfm2a5h8A/xf4XxNuPgC827KsB6ZxqXOBnZZlTSz3/ijBW/05wMnC3gGCIeWcaZp3AjdZljU4yXn/HzAM/DNw8zTadlKe52FZ1nxcCoBiMRiNns9rLlXyWow38fUo2R6ZvMNwwcV2fOIRnVgkRDm7REMegFKEyxnCxT7QQvhGAiiMO6Wpo5PWVRt43upj/74C6zp9zjfX0X9oLw89dYTHDvj05Y/9ztecgAvW6pzVFcLQS+QzJfKZxX1a0ewhmg48SNgO3ubseCuZdZfiJNqgt2/O17ftYMZMd/fJ3iqnT6nge8xX0JQM44YNusuTva0uEt8HuxjM3YymINkEvgeFfqB/3Kny3jHefL8enued/CRRl2b1a6VlWT82TfOnwDZgQ/XwHuBxy7L8qe85ThdweJLjI+9aK09w3yHgn4CHCeYHXkUwf+880zQvsixrdJmdaZqnA38OvLW6gGSazROivoyEvGzBpVINec2pZVA2QinC5SGMYj9qNOiN19TRiR1bwX///IM47rG3mNvCFv/rHeeRNTz68kcAWNOkccE6ndPatJq9NppbofHwIyQHXgRAaTrZrvPId26FOi7M6/uQL7tEwhpt6QipuF678i/KB7sErh2sTk53BDUH67g3VIh6NaOfGtM0UwQrZv+pOs/useqf2YgDlUmOl8fcPinLsv5xwqE7TdN8FvgicC3w5TG3fR74tWVZP5llOyel6zrzGRxHfvOSMCqvxQjP8ynbHs+9YFGseKRbWjESLmtbIyRj4aUf8iD4QM/2Bv3u6ZXBXreTSK3ayPs+d/+4oAfguD5/f8fjfOp9l1DMZrh8S5q1i1EE+US6X0Cz/hOtEvTmqeY1qJe9iYZUG/NdHnmkR69rHnbQsF2fXKFC54ooHc0JkvHaLHJQyscvF/ArJULxzmBOXqqZkHHy/1d57xhvvl+PJ598Unr3lqgZhT3LsvKmabYC87HTdgmY7Kc3Nub2mfgX4LPAq6iGPdM0Xwe8jmDIWIi6pZSiYnuUbY+y7VIoOxRKLo7jcaCnjELR1BqiozmxPEIeVINeDwwfBSM6ZW25eCrF9p29xwW9EY7r8+L+Qf7kdRvGzeFbdOU82nM/Rzu6EwClR1CbXwXrttVlceSxihWXcsWlrSlOe3OCqLH48+CUUviVIn65QCiaINKxjnBDC6FI7OR3FkKc0Gz6wx8GzmfMwopZ6iYYyp1o5NiRmVzMsizfNM3DQMuYw58BfkQwp2999VhT9eta0zTj01gEIsS8c9xqsKt4lCoOuaJDxXFxHB/XV+iaRsTQiUZ0mlJBL16qRj0tC8L3g50wskfBiENkyo58crbG3u7sCS+3vyfPBeua57uV06MUHHoa7YW70JxgYEK1nxbUzZtikUm9UEqRKwa7THS1JmltiqGHFn+Y2a8U8Up5QpE4RttqjHQboejU3xNCiJmZTdj7a+CXpmk+Atx2olWwJ/Ek8OemaaYmLNK4qPr1qZlczDRNA1jD+GHltcBW4C2T3OUpghIxF8/kcYSYKc9XVGx3tNcuX3Ao2S4Vx8Ot9lZFwjoRI0QiZRxXrHbZ9OSN8L1jQS+SCMLeJA4MVLj76WH0eJGXn952wkuuX5HCc5yFaO2JFTNoz/wUrX8PAMqIBztgrNpa9715nqcYLlSIR8N0tiRIJxd/Jbdvl/CKOUKRGEbrSsLpNvSYlEEVYr7NJuz9A8ECiVuBz5imuZvxhY0BlGVZrzrJde4EbgJuICiqPLKjxvXAQ5ZlHakeWwskLMvaOXJH0zTbLcuauJTtgwRDwL8Yc+ydwMTukD8C3g78MXDwJG0UYkaUUlQcb3RItlhyyJccbMfDdj18Hww9RMQIkYoZGOHQ8gtzJ+J7kOmGXE8wP884fohuT2+Zu58ZHi2fEtJKvPsNW/j3sDXpUK4RDnHB5g5yh/csePNHKR/2bUezfonmBSFTdZ0Z7Gk7xbzDemI7PrmSTWMyQmdLgkRscXuNfadS3fUigtGygnC6jVAsdWr9LAixiGYT9jYCiqDsCUDnbB7YsqxHTNP8LkFg7AJ2ExQ+Xkewk8aI24HLCcqxjNhf3ZbtWYJFHlcS7MTxIHDHmMf46cTHNU3znOpffyrbpYm5clx/tNeuVHHJF23KtofteLieIhTSiBghooZOQyJSFzsP1IzvVoNeb1BCY8yEe6UUu3oq3PV0hl09x9ZtrWw2eM3WRqL2EDdfdz6fvG37uMBnhEPcfN352MPjS3AsqFwf2tM/QcscCtoeTaHOfgOsWBqLAgplB8fxaG+M0d6SJBJevGFb37XxC1nQQxiNbYTT7YQSaQl5Qiyw2dTZWz+Pj38tQZHmawn2xn0aeINlWQ+d5H7fBC4B3gZEgH3V63xqsj17hZgPI8OxI712+ZJNsRzUurMdDzSIhENEDJ3GZJTwIn6I1j3PDXbFyPVCLA3hYCcGpRQ7jwQ9eXv7joW8ta0RXrO1kbNWx9E0DTufpT0F/3zT5Tz6Qg/7ewqsX5Higs0d2MP9VPInntM3L3wPdv8GbdcDaH6wIlGtORe15dWT9lDWG18pcgUHPaSxoi1JSzq+aPsBB1ubZUHT0NOtwXBtMh3seiGEWHCzLlhUHXK9gqCnD4KeuV9bllWe8k4TVM/9YPXPVOdcMcmxG2fS1gn3/RjBThpCTEkphe36lCtBuCtWe+0qTtBr5ytFOBQEu0QsTFNqCe9csdA8J9gVI983GvSUUjx7qMTdzwxzcODYVtobOqJcvbURsyt23OtZyWep5LOsj9mcfkaUhiSLN3Q73I321I/Qcr0AqERzsACjbcNJ7lgfPE+RyZdJxgw6WpM0Jhdn27NjW5v5wa4XI1ubya4XQiyqWYU90zSvJZi718yx4VUFZEzT/F+WZd02P80TYnG41Zp2FTvYIipXtKnYHhXHx3U9QtXVsRFDJxWPLFqPyJLnOTB0GPL9kGjED4V5en+Bu58Z5sjQsQUVp6+IcfXWRk7rjJ40NGcGBgAIz0NtuZPyHLQX74c9D6OhUGiw4SKUeQXoS2N1dMX2yJcdmhpidLYkiEcXvihxsLVZDuU56Mk0RmOnbG0mRA3N+KfeNM23A7cRzNn7HOP3xv2vwFdM0yxZlvXt+WqkEPPJ94NFFOXqkGy+6FAsO9huMByrlKqujtVJJyIYMhw7O64NmcNQGMCLpXlif4V7nu2jZ/hYyNuyMsZrtjayoaMOh0EH9gdz84rBVmEq1Y562e9C86oaN2z6CiUHx/XpaE7Q0Rw/bqX3fFO+j1/O4Ts2eiJNuHEN4VQz2hIJxkIsV7P5Fe/DwE7gYsuyxk6U+ZFpml8iKGfyYUDCnqgLtnOsWHGpHPTa2Y6H7fh4vo+uh4iGdeKRMOlkhJAMx86dW4HMEdxcP9uPRrj3+T76c8em025dE+c1WxtZU+vdLibjVNB23ot2YAcASguhNr0SNr0SlkjPlO8rskWbsB5iZXuS5obYgi4OUsrHLxXw7RKheIpoy0r0hhZC4cUZLhZCnNhswp4J/H8Tgh4AlmUNm6b5NWROnKiRkS3GRnrtskWbciVYROG4HlpIIxLWiRo6yZiBvsA9Hackp4wzcIhHX+jj3pc8hqqbsWvAy9cleM3WRlY212kI6HkJ7dmfoZWDtzfVtDLozWvoqHHDps/1FMP5Cqm4QUdrgnRi4V5rpVR1a7MioVgq2PUi3Tqtrc2EEItnNmHv6EluV0DPLK4rxIycaIuxiuuBgrB+rOyJDMcuPLuY57fbd/Gr57MMl4N66yENztuQ5NVnN9LZWKfDeZUC2vN3oR15FgAVCqPMK2HDhbCEVoxWKh75sk1zOpifF4sszPy8iVubGe1rMNKthE6wE4oQonZm805wG3C9aZr/PGHnC0zTTBMURf7aPLRNiHGms8VY1NCJRcI0yHDsoirbLg89vp/7njhCvhLUwQtpcOFpKV51dpq2hjoNeUrBkefQnv8Fmh30QKrW9aiXvQkSNdp+bZbyRQfP9+lsSdK+gPPz/EoJr1Td9aJtVXVrs8n3NRZC1IfZhL0HgDcBz1Tn6I3sbLEF+DOgH3jANM3Lxt7Jsqxfz6Wh4tTi+4pi2Zl6izEt2GIsGtZJpmQ4tlZKZZcHnjrM/Y8fpFgJas+FQ3DRphSvOruR5uTCr/yctVI2GLLtfQkAFY6itrwG1pxT91udjeUrGMpXiIRDdLWmaE5FF2R+nm+Xg5AXjmC0dAW18uKpeX8cIcT8m8078d1j/v5pgmFbOFaCZd2Ec7TqOUtjZrOoqXLFZTBnM1xwKTKI7Xqo6nBsUPbEwNBPsS3G6lC+5PDrJw7xwJOHKdtByDN0eMXpKa48q5HGRB2HPKXgwONoO+9Bc4Maf6rzjGAXjFhDjRs3fY7nU6wEO7W0tYdZ0ZIgtQDz83zHDrY203WMxg7CjW2E4g3yMyjEEjKbd+Tr570V4pTm+4pc0SaTqzCUK3Oorzxurt0pvcVYnckWbO57/CAPPX0E2wmGa6NhjVduDHP5y9ppiNfpcO2IwgDa0z9FG9wPgIokUWe/DlZsWRK9eZ6ngsVHjoeuhzDCGk0pgzUdDUQj8/v79NhdL8LpVoxG2dpMiKVqNtulfX0hGiJOPbbjMZy3GcyWyBYcHNcjEQ3TlDIIaRqxRSj+KqYnk6vwyx0HefiZbhwvCHmxiM5lp0e5bEOIZFNLfYcl34e9D6O9eD+aH5SAUatehjrzNRCp7/lmI9v0lW0PPaQRjYRZkY6RjIXp1XKEQtq8Br1ju14oQslGjMYO9FSjbG0mxBImn6ZiUSmlKJQcMvkKg8NlCmWHkKaRikeINgTlGgbqOTScYgaHy9yz/QCPPn8UzwtmbCRjYS7f2s4rVznEQzYkmuo76GWPBsWRh7sBUPHGYMi2Y1ONGzY1f2SlueOhKUU0Eqa9OUEqbpCIhUcXX/TPY693sOtFFuV56MnGYGsz2fVCiGVBwp5YFI7rky1UGMxWyOYrlG2XeNRY1M3YxfT1DRW557GDbN/Zg+8HIa8hYXDltjW84vQk0fxR8GyIN9Vv0PNctF0PwO7foKmgN1KtuwC1+UoI118dOKUUtuNTtl08XxGN6LQ0RGlIRIjHDCILVDpI+R5+KYfvOuiJdDXkNaPp8vEgxHIhP81iQRXLDsN5m/5MiXzJBk0jFTNIJyMy96cOdQ8UuOfRAzzxYi+quvSqMRXhqvPXcvHZK4jYWcgcqf+gN3gQ7ZmfoOX7AVDJ1qCcSsvaGjfseCMBz/H8YJ5qMkJDIkIyZsz7PLyxgq3N8vh2mVCigWhbdWuzcJ3PuxRCzJiEPTHvPM8nW7QZypbJ5CqUKh7RiE5zKkZYChvXpcO9ee56dD9P7+ofPdaSjvGqC9Zw4ZYVwf9bYRCGj4Dn1m/Qc20061ew79GgDICmwcZXoE6/DOqop8rxfMoVD9txiRhhErFgq75EzCAW0Rf0FyGl/OquF9WtzVZsQE81y64XQixj9fPuJ5a8csVluFDtxSvaeL4iGTfoaJZevHq1/2iWux89wHN7BkaPtTfFefWFa9lmdhyrX5gfCIKe8oM5evWobzfaMz9FKw0DoNIrgq3OGlfUuGGBiStpYxGd9uYUiZhBPBJe8FXnE3e9iHSsI9zQQigSW9DHFULUnoQ9MScjZVOGchUyuTKFkkMkHAxFRcIysbte7T6c4e5HDmAdGBo9tqI1wWsuWMc5Z7QfCx5KQWEgGLoFiDfWoLXjNbW2EolGiSeTlPJ5sEtoL9yNdugpAFRIR51xOWy4GGq8uOBEK2njsTB6aHF6uv1KEa+UJxSJY7Stru56IVubCXGqkLAnZqXieAznKwxmy2QLNq7rk4iGaW9KSF28OqWU4qWDGe56ZD+7Dw+PHl/VnuLqi9Zy9mlt47eYUwry/TDcHQzZ1rjgcKohRVNTiuJL23EPHcRoX0vr+peRefgHFEeCXsta1NY3QqqtZu2c7kraRWmLXd3azIhhtK4Mdr2IJRft8YUQ9UHCnpg2pRT5kkMmF4S8QslBD2mkEhGihvTi1SulFC/sG+TuRw+wrzs7enxtZwNXX7SOMze0HD/MrhTk+4IevVAYYrXdFivVkCKlcnR/+WaU54wez+gG7W9+P3geeS0F67bVZC5hrVbSTsV3KsGuF2EDo3kF4XQboVhKplMIcYqSsCdOaqRsysBwmVzBpuy4JCIGrY1SNqWe+Urx7O4B7n50P4d686PHN65q5OoL13LG2ubJP/yVD9neoEcvHIFo7XuCmppSxwU9AOU59P3wC3Td8A/kD/UuertqtZJ2Kr5r4xeyoIcwGtsIp2XXCyGEhD0xBaUUxbLLcKHCQKZMvmSjoZGKGzSmZNVePfN9xVMv9XH3owfoHiiMHj9jbRNXX7iO01Y3TX3nsUHPiNbF7hLxVIrS7h3HBb0RynMo7XmSeMsZwRy+BVbLlbRTGd3aDAg1NAe18pKy64UQIiBhT4zjeT7Zgs1gtsxwvkLJ9ogZOs0NsUWdayRmzvMVj+/s4Z7HDtA7VBo9fuaGFl5zwVrWrzzJ4grfh2wPZLvBiNVF0AMIGwZO34ETnuP0H0DvPGvB2lDrlbRT8n2o5PGKSULJpmMhT3a9EEKMIWFPAFCquAzng6HafNHGU4pUzKCjScqm1DvX83ns+R7u3X6AgeHy6PGtp7XxmovWsqZjGgsrfD8IedkeiMTBqJ+Vmm65SKK564TnGG1rKTqT9/zNVr2spJ2KXylCKQPRFNGu04JdLyTkCSEmIWHvFOb5iny1bMpQtkyx7BAxdNLJKIYUP64bzY0pohGDeDRMqeKOHndcn0ee6+be7QfJ5CoAaMA5Z7TzmgvX0dU2zbl2vgfDRyF7NJifZ9RR3bVKnvKDt9L6lveT0Y1Jh3I13SB+2nkMHDw654erp5W0U1Gei5fPBDtdNHRAqoVwunarj4UQ9U/C3ilopGzKwHCJXMHBcT2S8QjtzYnxpTdETUUjOkY4xPN7FfuPDrBhpcv5WzopVVzufewAv9x+iFzRBiCkwbbNnbz6grV0tMxg+NV3IdMNuV6IpoJ5evWiOIT2yDfRikNkHvkx7X9wE33/8blxgU/TDdqv+SsymdnP1au3lbRTUUqNbm+mp5qJNK8At7s+dzIRQtQVCXunCN9XFMoOQ9kKQ9Xix+FQiGTCIFpPPTkCCIJe31CJT37tERzXHz3+1R8/x/96x7ZgZXTRRg9pXHDmCl51wRraGmc49Oq5wa4Yud6ghl64joJetgft0TvQKnlUKEw+uRb0JrpuvIXirh24/UGdvfhp55HJ5MnnZh726m0l7Yn4ro1XyBAy4kTa12I0taPpBmhz780UQix/EvaWOcf1yBZsBoaD4scVKZuyJBjh0HFBD4Kh27+/Ywefet8laBpced4amtOzCOueE9TQy/dDLB2UWKkXgwfQHvsWmltBhWOoC/4IWtaQzwWhrqS1Y6xeTUMyOeOh23pcSXsiSvn4xSzK8zAa2wk3rUCP17bmoRBi6ZGwtwyNlE3J5MoMZCsUSzZUy6Y0SdmUuuV6Pr2DRXylGMpVjgt6IxzX58WDGd752i3j5vBNm+fA0OFgG7R4GnRjji2fRz0voj3+PTTfRUVTqAvfAenOcadkBoJ9fMNdJ160MaJuV9KehG+Xg8LI8RSR9k7CDa2yAEMIMSsS9pYRt1o2ZShbJpOvUB5TNkWvg4nlIqCqYa67v8CR/jzd/QW6Bwr0DpXwfcWV21afdIHM/u4sF2zpPOE5k3JtyByG/AAkGusr6B18Cu2ZH6MphUq2oC58JySaZnWpel9JeyLK9/AKw6CB0dKF0dxJKFI/q6OFEEuPhL1loFh2yBZs+jMlCiUHTykaYhHSUjal5oplZzTMHekv0N1f4OhAgbLtTX2fksOWDa0nvO76rjSep2bWGLcSDN0WBoIQpdfRj//u3xLaeQ8AKr0i6NGb4c4dS2El7cl45QJ+uYCebMRoXoGeapLCyEKIOavpu71pmlHg48C7gGbgKeAjlmXde5L7fQz46CQ39ViWtWLMeS3A54ELgdWAD7wIfAH4N8uyZvhpWT88X5Er2AzlymRyFYplh6gRlrIpNeK6Pj1DxSDYVcNdd3+BTL4y5X10XaOzOUFXW5KutiQrW5N0tadoTEZoSEb45i92TjqUa4RDXLClk1xxBnXlnApkDkFxCOJN9RP0lELbeS/ant8G/2xdj9r2h9NeFbxUVtKejPJc3Hwm2Mu2fTVGYweheloZLYRY0mr9jn8b8FbgFmAXcB3wc9M0L7cs67fTuP+fAsUx/y5NuD0NbAS+DxwAdODVwO3A6cD/nn3Ta6Nsu2TzNgPZoGyK6/kkY4aUTVkkSimGshWODORHg92R/gJ9mWAIdiot6Rgrq6GuqzX42t4Un3J43XF9br7+ouMWaRjhEDe/5yLsKebzTX6xMgwdgmIGks1QL/O+fB/tmZ+gHXoKALViM+qct0wriDqeIluwl8RK2hNRSuGX8vjOsXIqevIkO50IIcQM1SzsmaZ5IfBHwAcsy7qleux24Fng08Bl07jMdyzLykx1o2VZ+4BLJxz+ommaPwL+wjTNjy6F3j3fV+RLDplcmaFcJSiboodIxQ0ixtL5YFtqRoZgj4ztrRsoUDnBEGwiFh4NcyO9dSvaksQiM/tRq9ge7c1x/vkvr+KR57o50JNnfVeaC7Z0Yrv+Cdswjl0KFmOUM/UV9DwH7Yn/QOt5EQC19jzU2a+HEwxZjiy0yBZdwrpW9ytpT8Z3quVUogminesJp9vQ6qXHVQixrNTyneUawAFuHTlgWVbZNM2vAH9jmmaXZVndJ7mGZppmGsjNMLTtB5KAAdgzbPeicVyP4bzN4HCZ4YKN7XgkYmHaGuN1u4JwKXJdn57BIkcGCnSPWTAxnJ/6W0PXNVa0jO+p62pL0picv3mSFdujYnusbtY4rbOZpubWmQ3d2sWgR6+cg0QL1MuiBKeMtv3baIPBfrdq0ytRZ1wxaXHgkWHaYNWxIhYJ09pgEI/qrFuRXpI/B8r38YpZ8D2MpnbCzV3osZnNTxRCiJmoZdg7F9hpWdbEaqiPUt31CThZ2DsApICcaZp3AjdZljU48STTNGPV81IEPYbXAw9allV3QU8pRaHsMpwrMzBcplB20LSgbEpzg8zhmQtfKYay5XFz6o70F+gbKnKCEdjxQ7BtSVa2JWlrSixancKh4eBHJJqYwfBepVDt0ctCso6CXjkXFEvO9QLgn/la2HDhcad5nqJku1RsN5iLmorQlIqSjBscUlmAJRn0fLuEV8wF5VSaV6A3tEg5FSHEgqtl2OsCDk9yfCTgrTzBfYeAfwIeJuiZu4pg/t55pmleZFnWxFnxN1TPH3EvwfzAWfM8D8uy5nKJcfL5AoWyz6G+p8iXPCquT8wIaoLpIY1CZt4equ4lExFikQjZzMBo0Jmpsu3Rn3XoH7bpz9r0DzsM5Gwcd+pUFzNCtDVGaEsbtKYjtDUatDZEiBhjg1KJcq7EodysmjUr5XIZgP3790/r/JBTwij0oDsl3GgD5HsWsnnTpleytL30c8J2DoXG0PrLKcXWQHfwI69UMFex4gTzEaOREMmYjqbpqHKIoYrGEMdej33TfD3qgu9BJR8MUycawU9CZRCOHve76YwUi8GU5fl8L1rK5PUYb75fD8+b5vQRUXdqGfbiwGRLFctjbp+UZVn/OOHQnaZpPgt8EbgW+PKE238A7ATagDcSBM0ZbCC68Apln+7BCnoE4kaIZMxYcnOQ5qq1OU17eyvbX+jlQE+WdSsa2LZ5A319AwwMZSe9j+v5DOYc+rMOAyPBLutQKE/9pqSHoKUhCHVtjZEg2KWNarBY2q95yCkSyfcQcsu40XTd7JtqFAdo3fWf6G4JPxRmcMOrqDSuAcDzg/2aXU8RDmukEmGSMZ14JLQ86kPapWCRTCwV9LLGGurm/0UIcWqoZdgrAZONS8bG3D4T/wJ8FngVE8KeZVmHgEPVf37LNM0vAfeYpmlaljXTxwFA13VM05zNXSc1XHiWUFhxzpmb5u2aS8nIXrD/4+/vH7f69LafvsDN11/E6Ztajy2UGLNg4mRDsK2NsfELJtpStDUtra3iRnr01q1bd+ITS1nIFCGShsS6+gkUA/vRnv5ZsP2ZEYML/gvNTauo2B4l20VDoz0aprEhQjIeIX6SxRYjPXrrT/Z61JhyHdzCMCGjGb2xHaOpg9A8b0s30mMzn+9FS5m8HuPN9+vx5JNPSu/eElXLsNdN0MM20cixIzO5mGVZvmmah4GWaZx+J/BnBPP3fjGTxxEL40R7wX7ya4/wqfddwqdue3TKYJeMhauBLhXMr2tNsqI1uaTKcMxJaTiYo+eWIdFcP0Hv6M5g1a3voWINuNveQTHSjJ2tEIvotKRjNCSjJJdI0ePpCMqp5PCdCnpDSzA3L5GudbOEEKewWoa9J4E/N00zNWGRxkXVr0/N5GKmaRrAGuCxaZw+MkQsBa3qQDwaZvsLPSfcC/aZ3QOcvamNF/YM0tmaGNdb19WWJJ04hXcLKWaCLdA8u76C3oEn0J75KRoKP9FC5uy3oYUbiRkhOprjJONLs2TKiUg5FSFEParlu9CdwE0EiydugdEdNa4HHrIs60j12FogYVnWzpE7mqbZbllW34TrfZBgCPgXJzkP4L2AAh6ft2cjZkwpxeG+PMWKy94jwyc89+hAgXe//kwULKkh2AVXHKoGPTfYGaMegpNSsOc3hHb+EgAntYLKuX9IS2Nj0IsXr++9aWcjKKcyDL6P0dQZ7Gcr5VSEEHWiZmHPsqxHTNP8LvAZ0zS7gN3Au4F1jF8peztwOUE5lhH7TdP8FkEB5gpwJcFOHA8Cd4w577+Zpvn7wE+BfQRbsv0BQe/hlyzL2jXvT0yc1MBwicetXnbs7KVnsMjLT2/n5ae3nfA+67vSJONGtd6aAKAwGAQ95Qd73dYB3/dRz92NceBRALyW9aRe+Q5WpFMzLiy9VPiVEl4pRyjREAzZppqlnIoQoq7U+t33WuAT1a/NwNPAGyzLeugk9/smcAnwNiBCEOQ+AXzKsqyxaeBe4OXV63cQlGl5hqBn72vz9izESeVLDk++GAS8fd3jV9YeHchz45vP5t/vsuZvL9jlLt8Pw91BL1q89rMRHM+nVKwQe+FnxPqeByC85mw6r/gjwsb8LkqoF8r38PIZtFAIo3UlRlMnoUjs5HcUQohFVtOwZ1lWmWD49YMnOOeKSY7dOM3rPwA8MNv2ibmxHY9ndw+ww+ph5/6hcXvHNiQinGe2s21zJ6s7UoRC2vztBbucKQWFAcgcCYZs47Wb+O8rRdn2KFdcdDzSO3+E3hd0lic3/w6NF78ZbZkN147wSnn8ShE91YzR3ImebFpWcw+FEMtLrXv2xDLj+YqXDgyxw+rlmV39VJxjy/SjEZ2Xb2rjvM2dnL66adwOCPO2F+xyplTQo5c5HOxxG2uoSTMcN9i+zHE94rEwbQnQd9yJ1x9sf9ZwzqtpOPc1yzL8BOVUMoSMKJH2tRhNHWhho9bNEkKIE5KwJ+ZMKcWBnhw7dvbyxIu95McMt+ohjS3rWzhvcwdnbWwlEp56LtOc94JdzpSCbA9kj4IehmhqUR/e9xVl26VUcQmHdZKxMOlUkrhfJPerb+AOHQU0Gi9+M6kzX7GobVsMQTmVLL7jEE63YjStQE/UJmwLIcRMSdgTs9Y3VGTHzl52WL30Z8bXpt64qpFtZgcvP6OdZGxmPR+z2gt2OfNdwuVMsL9tOALRxVvlaVd78TzPJxbV6WhJkk4YxGMGfq6fgbtuxcsPQUin+bK3k9h4zqK1bbH4TgWvMEwoliS6YlVQTkUWYAghlhAJe2JGcgWbx1/s5fGdvRzoGb9BbFdrkvM2d3Ce2UFLWiaqz4nvg12Aco7Y8EFCbhma1kJk4Xf5831FyXap2B66HiIZC9OYipKMGaNFqu3+Qwzc9RX8cgEtHKHlVdcSW3XGgrdtMR1XTqVlBaFoXe2yKIQQ0yJhT5xU2XZ5ZvcAO17o4cWDQ6gxu1g0paKcZ3awbXMHK9sXd2hxWbJLUMlDcTgIe74DysONNix40LOdai+e7xOPhulsSZCKB714Y2sbVo7sYuCe21CuTSiaoPXq9xBpX7ugbVtsfqWIV8qjJxowmrvQG5rRtOW52EQIsfxJ2BOT8jyfnfuH2LGzh2f3DIxbIRuPhnn56W1sMzvZuLqR0DKciL+oPCcIeKUsVHLglEE3IBKHcCN+buHmLXq+olxxKdseRlgnlTBIJyMk4wZR4/ihytK+Zxi87w7wPfRkE62vfS9GU+eCtW+xKc/FKwyj6TpG26qgnIox2RbeQgixdEjYE6OUUuztzvL4zl6efLGXQvlYycKwrnHmhla2be7kzPUthMPSyzEno8O0eShlwKnOeYzEIdm64DthVByPUsXF9xXxaJgVrUkaEgbxaHjcKumxCjsfJvOb7wOKcFMHrVffQDjVtKDtXCxKKfxyISin0tCC0dSJnmxcliuKhRCnHgl7gqMDBXbs7OVxq5fBbHn0uAZsWtPEts0dvGxTO/GofLvMmVOCSgEKmWPDtOFYUBh5gSf9e16worbsuETCYRoSERqTUZIJg8gJwrtSivxTvyT7eLATodG+ltbXXI++TLYDG1dOpWMdRmO7lFMRQiwr8ul9isrkKzxR3bLscF9+3G2r2lNs29zBuWYHTSkZwpqzkwzTLrSKHfTiKRTxSJiu1hSphEE8MnUv3gilfIYf+TGF54NNbaKrzqDlqncti6FNpXz8Ug7lOoTTbUFx5LiUUxFCLD8S9k4hpYrL07v62P5CL7sPZRizzoKWdIxtm4OFFp0ty6PHpqZ8H+wilHPjh2mNxRmm9byRFbUuUSNMOlXtxYsbGNMcgleey9AD36G050kA4hvPofnSP0TTl/7bhu+U8QpZQrEUkc7VhNOtUk5FCLFsLf13bXFCruvz/L5Bduzs4fm9A7jesYiXjIU554wOztvcwYautMxPmg8jw7TFTPDVdyEcXZRhWqUUtuNTrLiAIh41aG2r9uJFwzP6//Udm8FffoPKYQuA5JZX0Hjx7y35FanK9/CKWVAKo2VFsABDyqkIIZY5CXvLkK8Uew4Ns8Pq4amX+ilVji20MMIhzt4YLLTYvK4ZXV/aH9514bhh2koQ7CKJoAjyQj+8pyhVXCquRzSs09QQpbG6ojY8i/9fr1xg4O6v4fRVtz8777U0vPyqJf/LwGg5lWRjsABDyqkIIU4REvaWCaUUR/oL7NjZwxNWH5l8ZfQ2TQNzbTPnbe5k62mtxCLy3z5nyodKMQh3xcyEYdqWBR+mVUph2z5FOyjLkogatDbFSCUixCP6rIOZV8jQ/4tbcTO9gEbTK36f5ObfmceWL75j5VTCGG2rMZo6lsWcQyGEmC751F/iBrNlHt/Zyw6rh6MDxXG3re1sCBZanNFBQ3Lhe5hOCWOHae0iuDYYi7OaFoJevGLFxXY9ooZOSzpGQ2L2vXhjOZleBn5xK14hAyGdlsv/C/ENL5ufhtdAUE4lj2+X0VPNRJpXEErIdAUhxKlHwt4SVCg7PPViH9t39rD3SHbcbW1NcbZVd7Rob5a5SPPCc4KAV84Gf8YO08bTC/7wvg+u5zOYK6NrGrFomI7mOMm4QWwOvXhj2X0HGLjrq/iVYrD92avfTWzl6fPQ+trwXRuvkCFkxIm0r8VoakfTpZyKEOLUJGGvTqQbkqzVE8Sj4XFz7EbYrsdzewZ4fGcvL+wbxPOPLbRIJQzOPSMIeGs7G6TnYj6MHaYtDQe9eIpq0eOFG6Z1PYXjeriewnU9fKBQcQnrGq3pGA3JKKl4GD00f3PNyodfZPDe24Ptz2LJYPuztjXzdv3FpJSPX8yhPAejsZ1w0wr0uGzjJ4Q4tUnYqzHb8cgVbF466rGvO0dfDs7f0onj+pTKLi8dHGLHzl6e3t1PxfZG7xc1dLZuamOb2cHpa5vH7V0q5sApV/emzYwZpp3/1bRKqSDYeT6u6+N6wXZ0uh4irGtEIzrNDVGiEZ2IymHoGqs75r8GXHHPUwz9+lvB9mepZlpfewNGY/u8P85i8O0yXjFLKJ4i0r6acIOUUxFCCJCwV1O24/HCvkH+z60Pj9t79qs/fo6/etf5PPxsN/c8dnD0eCiksXldM9s2d3L2xlYik+xdKmbBc4OAV84GdfGcEoTC8zZM6/sjwc7DdRWeH/xfh3UdI6yRiIVJxAwiYZ2IESIcDhEJh0Z7aLNDC/P/nH/hNwz/9ocE25910vbaG9CTC1/keb4p38MrDANgtHRVy6nEa9wqIYSoHxL2aihXsI8LegCO6/Ppb2znb993Cb/cfpB1XWm2mZ28/Ix2UnGZdzQvjhumLYFSEInNqeix56vRnjrH8/F8n5CmYeg6YV0jngyTiIaJGDpGOETE0Oe8sGKmlFLknryH3BN3AxDpWEfra65fkvXmxpVTaV6BnmqScipCCDGBhL0aeuS5o8cFvRGO67Nz3yB/999eiRGWHrx5MzJMWxoOFl2MDtOmZzxM63lBsHOqwU4pRUjTCIdDGHqIVMIgFgljGDqRcIiIEZrXuXazoXyf4Yd/SGHnbwGIrt5My1V/TGgR6gHOK9/DHe5HCxtSTkUIIU5Cwl4N7TkyfMLbD/XmufjsLvJFZ5FatEzNcZhWKYU70mPnKhzfQ/mKcDjorTOMEI0NUaJGaDTYGWG97uZRKs9l6NffprT3KQDip51H86VvW3rz2uwiOBVCqbVEmlcsyaFnIYRYTBL2amjjyhN/SK3vSuN56oTniCmokb1p88HetNMcpvWrCydc18PxFN6YhRNGWCMe02mJRomMCXVGOESozoLdRL5TYfDe26kceQmA5FmvpPHCNy2pIU/l+3j5oeD/samLWNdGKacihBDTIGGvhi46awW3/ujZSYdyjXCIC7Z0kpNevZmZapg21gD6+G933x+/Gtb1FFqI0fl1qXiYeDRM1NAxjGqw07UlV9rGKxcYuOurOP3BYp/0tteTetkVS+p5+K6Nl88EvXhNIYg1SNATQohpkrBXQw3JCB+94eLjFmkY4RA3v+ci7Cnm84kJPBfsQhDwxg3TxkeHaT1P4dreaLjzfJ9QqLpwIhwiETeIR3UiYX10KHaxF04sBDc/xMAvbsUd7gNNo+kVf0DSvKjWzZoRr5THt0sYTZ0YrV1QOlDrJgkhxJIiYa+GIobOlvUtfPnDr+Y3Tx9m/9E867vSXLClE9t2qJQrQAhqPKm/Lp1gmNaNNQelTmyFWyzjA+GQRlgPYYRDpBMRYlEdo1rqxAjXfuHEQnCGehi469agLIkepuXydxBff3atmzVtSvl4+QxaSA92wWjuXHrzC4UQog5I2KuxiKHT2hjn9JYKa40KbekCuV1PAKFgXtnoHz1YLRoKgRYO/q5poIWO/8pkxyceW6LhxqmMlktR5TyeXcEJGThaFFeFoAy67o0rTByJVFfDhoNevHpbOLEQ7N799N/9NVSliGZEaX31dUS7Tqt1s6ZNuQ5uIYMeT2G0riKcaq51k4QQYsmSsFcn8sPDDO7bTfKMM4IhSKWC3iulxvzxgTH/noymEYS96teRHqvREDgm+IVC1RA5jQA57v6T3a4tXID0XPxyHjefwS1k8CslHKWBkUCPNgeFicOh0cLERlgbHYpdSvPS5kv5kMXgL29HuQ6hWIrW176XSOuqWjdr2rxyAb9SxGhsw2hZJQWShRBijiTs1ZvwHGuFjQbBCWFx9N8++BNuHxsglYKQVj1eDUpjA+TYnkI0gh5Ijh0fDZBj/kza0zgmQIbG90Yqz8XxFLmhIdzCMKqUQXfLGCEIRRPE2jpIxCKjhYlHVsQKKO5+gqFffxuUj55qoe11NxBOt9W6WdNybNg2RKRtTTBsq8tblBBCzJW8ky43o0EMYJ7mN03ZszgmTPoekwdIH8bkxmojjwuQCg3b9am4PnZvf7C7RDhHOuQRbUpgJFuJRiN1UZi4XuWfe5DhR34EQLi5i7bXvhc9Mfft3haDch3c/BChRAORlpXoqeZTsldWCCEWQk3DnmmaUeDjwLuAZuAp4COWZd17kvt9DPjoJDf1WJa1Ysx5a4D3Am8ATgc84Bngkyd7DDHGaICcx5ClFL7v4dgeZdvB9Tyi4RDJhEF7Y4RoWGPd2nYMGcI7KaUUucfvIvdU8C0d6VxP66uvXzLDn36liFcuEG5sJ9K6cklu2yaEEPWs1j17twFvBW4BdgHXAT83TfNyy7J+O437/ylQHPPv0oTb3wz8JfAD4OsEz/da4B7TNK+1LOsbc2i7mAXfV1Qcj4rt4StF1NBpSCdpSESIR8PEIjr7VRlAgt40KN8n89vvU7QeASC2ZgstV/4xWrj+a9Ap5eMVhtEAo201keYVMmwrhBALoGbvrKZpXgj8EfABy7JuqR67HXgW+DRw2TQu8x3LsjInuP1XwFrLsvrHPO6/AE8CnwAk7C0CbzTguUCwArmxIUpDPEI8phM1dBmymwXluQze/++U9z0DQGLTNppeec2SKE+iPBc3P0golgqGbRta5HtACCEWSC0nP10DOMCtIwcsyyoDXwFeaZpm1zSuoZmmmTZNc9JPCcuynhsb9KrHKsDPgHWmaUrX0QLxPEWh7DCYK5MtVABFazrG2s40G7oaWdvZQHM6SiwSlg/5WfCdMgN3fXU06KXOvoymS/9wSQQ9v1LCzQ2iN7QSW7GRcLpVvgeEEGIB1XLM5Fxgp2VZ+QnHHyWYzn8O0H2SaxwAUkDONM07gZssyxqcxmOvAPJAeUYtFifkeYqy7VJxPEJaUOeuvSlBMhYmHjOIyIrZeeGV8gzc9RWcgcMApC94Aw1br6hto6ZBKRUUeFZ+MGzbskK2PBNCiEVQy7DXBRye5PhIwFt5gvsOAf8EPAzYwFUE8/fOM03zomrv3aRM09wE/AHwLcuypihWd3Ke52FZ1mzvfpxSuYzruHR3nyzf1pdgiLa6r6wGUSNEPBoiFgkTcjXsQgi7EPyHTVe5HGTwffv3L0yjl5hwPIkRidI7lKXYs5/wEz9CKw2jNA1v85UMpDcwUO+vle9BKQdGDP7/9u48SJKzPvP4Nyvr7mv6mOnpOZgeWfKLbBhAQlJgWCwt9nJ6F2wEBEYHa/CyrNeAjUBG2IjDQqBYW1oMBgsWIQRGSLEIE7ssy8KCQdyCmRGs9XJoRiPQrTn6qjMz9483q7u6prrnqumsrno+ER3VnZmV/auMPp5633zfd2gcwnk4eO9JnWphwd2m28nfv/VK12I5XY/lOn09giDoyHlk7SUZ9gpAu1BWbtrflrX2hpZNtxtjfgx8EDcA48Z2zzPGFIHbgHngbSdasDj1IKJadwEvlfLIpj2Gi2nyOZ9cOoXvq0uuE4Y2jDE6sYnyL35I7Zf3k5nYxsZf/02OHPoFc/a7BE96LtHGnUmXeWz1ClQW3DrFQxvdmsUiIrJmkgx7JaDdDML5pv0n4sPAdcBzaBP2jDE+8BngbOC51tpTakLzfR9jzKmcYpnZxx+nlEkzNXU8tyqurShy4a5SDagFIQO+Ty7r1pgt5tMU8umOzn3XaNGb3rGjY+dcb7xMjvqRx3joo39GFNQWtx/2M2z8d29gaNdF+AMjCVZ4bFEUES7MEIUB6dFJsqNTHRkl3Gil6OTv33qla7Gcrsdynb4eu3fvVuveOpXkTVQP4rpyWzW2PXAiJ7PWhrhu4bEVDrkReCFwqbX26ydy7n4URRGVasCR+SoHZyrUaiHFfJptGweZ3jLEzi0jbBorMljMapLj08BLZ3j4tmuXBT2AKKjx6OdvIDPR3cufRWFAfeYxSPnkJqfJTmxbF9PBiIj0oiT/S+8GnmiMGWzZfkH8uOdETmaMyQDbgUfb7LsOeDXwRmvtZ0+81P4QRhHlSp0jcxUOzpSpBSGDhQzbJwfZsWWYHZuHmdhQYCCfwU+pq/Z08TI55n/6g6OCXkMU1Fj4+Q/xurQ7NKyWqc88jj84Sm7qDNIjG/FO17rJIiJyTEl2494OvBl4DW5S5caKGq8G7rTWPhBvewJQtNbe03iiMWajtbY11F2B6wL+UvNGY8wV8fe5xlr7gdPzUtavtpMcD2SXTXKsaTFOvygKqT5ygNL+vaTyg7BC0GuoPnIfxTPP4aRHGJ0GURQRlmaI6nUy41vIjE2RSmeTLktEpO8lFvastd81xtwGvD+eU+8XwGXADtxKGg03A7/N8tVV7zPGfAY3AXMFuAi3Esc3gU83DjLGvAR4P/Az4F+MMa9qKeNz1tr5Tr6u9SAIIip1TXKctCgKqT56P6V9eyjvv9tNSwIUpneRn37yqs/NbtpB1EX3zkRhQH32EKlsnuzkNtIjE2rNExHpEkmvTXQpbiWLS3Fr4+4FXmCtvfMYz/sU8EzgYiAL7I/P815rbb3puKfEj2fRfrWMnbiRuT0vCCLKtTqVauCmSMn6jA/nGSxmyWfT5LLdPxlvL1gKeHsp79+7GPAa0qNTZMa2MHD2Mzj8jc+27cr1/AzFM88hLLVOUZmMsFYmmJ/BHxwlO74VvziUdEkiItIk0bAXr5hxRfyx0jEXttn22uM8/9XA1SdX3fpXDyIq1Trlap20nyKb8dk4qkmO11oURdQePcDCvr1xC97hZfvTo1MUdu6isPPJZEY2uY1hwOTFVx41SMPzM0y+7Eqi+urdvGslWJglqlfIjE25bttMuwH2IiKSpKRb9qTDavEUKdV6gJ/yyGXTbB4foJjPUMynSfsKeGuhEfBK+/ZSahvwNlPY+ZTlAa/5+bUK6ZEJtr3uBuZ++gNqj91PbtMOd59evUZUW3He8DURhQHB7CG8TI7s5LQGYYiIdDGFvR5QrYdUKgHVoE7a98lnfcZG8m4OvJwC3lpxAc/dg7dywNtFYXoXmQ1HB7yjzlerENUqzA1uIT02TWF0tCu6bsNahWD+CP7gCNmxrV0/35+ISL9T2FuHWic5zvg++ZzPxoE8hWznJzmWlS0GvP17Ke3be8oBr52FGbfY3NhA/hhHnn5BaZaoViEztpnM2BZ124qIrAMKe+tEFEVUayHlWkA9CMmlfYr5tJsiJZ8mn01r7rs1EkURtcfuX+qinVu+8m96dDOF6SdT2LmLzIbJhKrsrCgMCeYO4aUzZDftcN22KQ3qERFZDxT2ulgYRVSrAZVGwMumGSxkGCpmKOQz5DM+KQW8NXHMgLdhMh5k0TsBryGsVQnmD+MPjLjRtuq2FRFZVxT2usxRkxxnlyY5LubTmgNvDbmA98ule/BWCnjTu8iM9lbAawhKc4TVMpkNk2TGt5DKJt+VLCIiJ0Zhr4t4eByZr5DN+IwO5xjIa5LjtbYY8Br34PVhwIOWbtuN28mMTqrbVkRknVLY6xKj4xsYzf0aY5NT+EFFkxyvoSiKqD3+S0r77qa0b0+bgLeJwnTcRTu6OaEq105YrxLMuW7bzNgW0oMbki5JREROgcJewsJ6lXBhlrEj+6g9eoBUeIjCWed2xVxqvWx5wNtLMHdw2f5+C3gNQXmesLJAZsNGMuNbSWULSZckIiKnSGEvQWG9SuX+e3jo1msWV0mYAw5+5WYmL76S9MiEAl8HuYD3KzfIol3AG9m0OMgivWGyr7rOoygkmDuMl/LJbnyCum1FRHqIwl6CwoXZZUGvIQpqPHzbtWx73Q0Ke6doWcDbv5dgtjXgbYwD3lP6LuA1RPUa9blD+MUhMmNbSQ+NJl2SiIh0kMJeguZ/9v22C92DC3zz/+/b1A4/TP3II/iFIVLF4fhxCL8wjF8cwssW+jKgrGYx4O2P78FbKeBN7yI9urmvr9+ybtuxraRy6rYVEek1CnsJqj60b9X9tUMPEtWrlO7dvfJBftoFwMIQ/mIYHMYvDOIXhxe3p/KDeD28qkYURdQOPrDURTv7+LL96eGJeC1aBTyIu23nj+B5HtmJeLStrz8HIiK9SH/dE5TdvHPV/ZmJbURhSPGsEkFphnBh1j2W5oHIHRTUCeYOEcwdon0bYczzSOUH8AvDy1oGF8NgU1j00plOvcSTUhweJZ3N4WULRNXSiscp4J2cRrdtqjDoJkkeHNW1ERHpYQp7CRo46zwOfvmmtl25np9hwJxPWJqjOP2kZfuiMCAszxMszBCWZgkWZghKs3EYnF22nTCInxQRluYIS3Nw8Khvt/x7Z/NNoXBoqbUwDomN7Z3uQvYyObx0hsED91B77AClTTsotoxMdgHvwXii470EM8sDnj88QbHRRTs2pRDTIqwsEJTnSY9sJDu+hVSumHRJIiJyminsJShVHGLzy9921CANz88w+bIriert2+q8lO9a4YrDq54/iiKiaomg0SK47LE5FM4S1cpLz6uWqVfLcOSR1V9A3IW82DK4LBQ23WN4HF3IXiZH/chjPHzbtW1HJuOnmbv765T271HAOwmL3bZAZmIr2dHNeH6yLbgiIrI2FPYSlEpnyW1/Ittf/0Fm7/kutccOkNu0g+KZ53Rknj3P8/ByRVK54jFXe2jM9+daCGeOCoNhacY9ltt3IR+jEFL5wbjbeDgOiPHncVdy/gm/sSzoNTRGJk9d8i7m7v4aRCEA/vA4hWnXRZtRwFtVFNSpzx0klR8kO7YFf2hM10tEpI8o7CUslc6SGh5nbuwM0gMTFDZvc12tCdWRHh5f9TjXhTznWgubuovD0lxTd7J7XN6FPEtYmgUeOOqcheldBPNHVh2ZXL7vJwyc/Qy8dE4B7wSElRJBaRZ/eJzc+FZS+YGkSxIRkTWmsNclFuZm4fH7GRtbPWwlzXUhj+AXR1Y9LooiwsrCUS2Dzd3IjVDoD45SP/zQquerHX6Y0QtfSVSe7+TL6VlRFBEuHCEKQzIT28iOqdtWRKRfKezJaeF5Hn5+AD8/cOzlxlJpygd+vOoh2U07IAw7WGHvct22h0jlBshtmsIfGlcrqIhIH+vdiddk/QjrFM96+ootT56fcfcxrjINizhhtUR97iD+4Ci5zTtJD08o6ImI9DmFPekKUb3G5MVXHhX4jjUyWZwoigjmjxBWSmTGt5LffAZ+YTDpskREpAuoG1e6QlSrkB6ZYNvrbmDupz+g9tj9HR2Z3MuiMKA+e5BUtkBu43b84XE8T+/jRETEUdiTrhHVKkS1CnODW0iPTVMYHU1kZPJ6ElbLBAsz+ENjZMe34BeGki5JRES6jMKedJ2FGTdv39hAPuFKulcURYSlGaJ6ncz4FjJjU6TS2aTLEhGRLqSwJ7LOuG7bQ6SyebKT20iPTKjbVkREVqSwJ7KOhLUywfwM/uAo2fGt+EV124qIyOoU9kTWiWBhlqheITM25bptM7mkSxIRkXVAYU+ki0VRBPUqVBeAUbKT027uvJSfdGkiIrJOJBr2jDE54F3AJcAosAe4ylr7lWM872rgHW12PWyt3dxy7FXA+cAFwCTwTmvt1adcvMhpEoUhUa1MWC0TBXUIqpAfIrf5DPyB1ZepExERaZV0y95NwB8A1wM/By4HvmiM+W1r7beP4/n/AVho+rrdEgvvAR4GfgQ87xRqFTltoqDuwl21TASkMjn8wVH84jDUC5DJKeiJiMhJSSzsGWPOB14BvMlae3287Wbgx8D7gGcfx2k+a609fIxjdlpr9xtjNgCHTrpgkQ4L61WiapmwVsbzfLxsgfToJH5hiFS+iJfJu6XOHtaPrYiInLwk52t4KVADPtrYYK0tAx8DnmWMmTqOc3jGmGFjzIqLf1pr959qoSKdEEURYbVMfe4QtcOPEJXn8dIZMhPbyW09i/x2Q25ymvTwOKlsQWvaiohIRyTZjfs04B5rbesSCd8DPOCpwIPHOMcBYBCYNcbcDrzZWnuw04WKnKzF++8qJaIwIJXNkyoMkR4YIZUbcC14GmwhIiKnUZJhbwr4VZvtjYC3ZZXnHgI+AHwHqAL/Gnf/3jnGmAustad9IdUgCLDWdux8pVIJv1Jl/333deyc61W5XAZYv9ciDKBecaNoAfwsZAuQG4AgBbUQ5o8AR47rdAsL7rbUTv68rWe6Hkt0LZbT9Viu09cjCIKOnEfWXpJhrwC0C2Xlpv1tWWtvaNl0uzHmx8AHgUuBGztSocjxCmou3NWr4KUgk4PBMcgWIVMALWUmIiIJSTLslYB2s8Lmm/afiA8D1wHPYQ3Cnu/7GGM6dj67ewYWskzv2NGxc65XjRa9br4WURQR1SqE1RJRvUYqPYyXLZAaGMHPD+LnB/DSmY58r8a78k7+vK1nuh5LdC2W0/VYrtPXY/fu3WrdW6eSDHsP4rpyWzW2PXAiJ7PWhsaYXwFjp1qYSDtRGLiAVykRRSGpTE7334mISNdLMuztBt5gjBlsGaRxQfy450ROZozJANuB73emPJHG/HclwmoFzwMvkyc9PEaqOIyfG8DLFfC8JAe1i4iIrC7J/1K3AxngNY0N8YoarwbutNY+EG97gjHmic1PNMZsbHO+K3BdwF86bRVLXwhrVYL5I9QOP0KwMAMpn8zYZnJTZ5LfZshNnUlmZBOp/ICCnoiIdL3EWvastd81xtwGvD+eU+8XwGXADtxKGg03A7+Nm46l4T5jzGdwEzBXgItwK3F8E/h08/cxxlwSn7NxL+CzjTFvjz//gLX2+IZESs+KojC+/67s7r/LZPGyBbIbJvELg6RyxY7dfyciIrLWkl4u7VLg3fHjKLAXeIG19s5jPO9TwDOBi4EssD8+z3uttfWWY/8IFxYbLoo/AG7heOe/WCNRGOKl1Fp0ukVhsLQ8Wev9d/kBF/B0/52IiPSARMNevGLGFfHHSsdc2Gbba0/gexz1/K7keZDOEswdJIoitwkg5eP5Pnju0UulIZVSEDkJS/ffleP77wqkh8fwiy7geVq1QkREelDSLXvSkBuAse3ktk5DWHfBpF6HeoWwVnEjQes1oqhCFAREUQhRBJ6Hl/Jd+Gs8+v7Stj4X1qpE1RJhrYLnp/GyeTJjU/H6swOkMu1m/xEREekdCnvdwktBtkB6cMNRu6IoigNgQBTUIXSPUVAjDOpQqxDWK0v76xXCICAKAzzPI4I4/KUglV4Khr4PXqqnWrOOef9dvojn6/47ERHpHwp764DneeBnjhlSoqDuWgCDOgT1+Os6Ub1O1GghjI+hXiUM40BIRISH56VcAFxsKUzHAdHv6kCo++9ERERWprDXQzw/jeen3VJdKzgqDDYFxKhWIaxXiYIaURBAvbQYCF3zIG6qkVTj/sHmYLi2gTCq1wirZcJaGc/z4vnvJvCLQ7r/TkREpInCXp9ZvJfveAPhYpdxHcI6Ya1KWKvAYiCsLQVC92w8z48HkaTjlsLU0sCSk5yXLooionp8/1295l5HNk9meAt+fohUvqj770RERNpQ2JOjHHcgDIOmFsKAKKxBEBDWq4TVsguEYQi1KmG44O41jCKIWOoebrp/0PPc4JLF7xGFRNV4/dmgTiqTw8sVyI5O4ecHdP+diIjIcVDYk5OyGAjT2RWPiaIwbiFc3jroRhpXXUtdrRqvOVslDOsQhjB/CID6jGutSw2MLK0/myvo/jsREZEToLAnp43npfDS2VV/yqIoXAqDcRBkAQgD8lvOJJUbwMvmdf+diIjISVLYk0R5XgrSqeXLkRU3AJAenkimKBERkR6idblEREREepjCnoiIiEgPU9gTERER6WEKeyIiIiI9TGFPREREpIcp7ImIiIj0MIU9ERERkR6msCciIiLSwxT2RERERHqYwp6IiIhID1PYExEREelhXhRFSdew7tx1110h4Pm+37FzBkEAQCfPuV7pWiyn67GcrscSXYvldD2W6/T1iM8XnXvuuWooWmfSSRewToVAKgiCmU6fuPHLKboWrXQ9ltP1WKJrsZyux3IdvB7DuP9/ss6oZU9ERESkh6kpVkRERKSHKeyJiIiI9DCFPREREZEeprAnIiIi0sMU9kRERER6mMKeiIiISA9T2BMRERHpYQp7IiIiIj1MYU9ERESkhynsiYiIiPQwhT0RERGRHqawJyIiItLD0kkX0O+MMTngXcAlwCiwB7jKWvuVRAtLgDFmCngDcAHwdGAQuMha+7Uk60qCMeY84HLgImAH8DjwLeDt1tqfJ1haIowxTweuAs4BNgFHgN3Au6y130qwtK5gjHkL8D5gj7X2qQmXs6aMMRcC/3eF3Wdba+9Zw3K6Qvz342rgt4AM8Avgb621NyVYliRILXvJuwl4E3ALLuiEwBeNMc9IsqiEGOCtwDZgb8K1JO2twO8D/wf3c/EPwIXAj4wxZydYV1J+Dffm9EbgT4DrcKHvn40xv5tkYUkzxmwG3g7MJ11Lwq7HvWlu/nggyYKSYIx5PnAnLuT9JfDnuL8j25OsS5Kllr0EGWPOB14BvMlae3287Wbgx7h36c9OrrpE3AVMWGsfN8a8GPhcwvUk6W+AV1prq40NxphbgbtxQfDyhOpKhLX2VuDW5m3GmL8H7sWF4S8nUVeXuBb4Ae7N+4ZkS0nU1621dyRdRJKMMSO4BoS/t9a+IeFypIuoZS9ZLwVqwEcbG6y1ZeBjwLPibs2+Ya2dtdY+nnQd3cBa+63moBdv+xnwE6AfW/aOYq1dAB6ljwNO/IbxVcCfJV1LNzDGDBlj+rkR45W434e/gsXr4SVakXQFhb1kPQ24x1o717L9e4AHPHXNK5KuFf/RngQeS7qWpMT/vCaMcw3wJKDv7m+FxZ+HDwCfsNbuTricbvBJYAYoGWP+tzHmyUkXlIDfAe4BXmCMuR93PQ4aY641xvjJliZJ6ud3QN1gCvhVm+0Pxo9b1rAW6X5/CGzFDVToVx8H/iD+vAp8GLgmuXISdSnwG8CLE64jaVXgduCLuDdCu4A3A980xpxnrf1pksWtsTNx9+bdBLwf+BHwItytH3ngjUkVJslS2EtWAai02V5u2i+CMeaJwAeBb+JaMPrVO4GP4AbxXALkcDeit/s96lnGmCHcvXrXWmsfPNbxvSwejd08IvufjDFfwN3H+A7cm6R+MYib1eFKa+374m3/3RgzCLzeGPMea23f9gz0M3XjJquE+2fVKt+0X/pcPNryfwCHgIuttWHCJSXGWnu3tfbL1tqPA88FzsW1YvSbt+NatP4m6UK6kbV2D24E6nOSrmWNNf5n/GPL9k/h3hSdv7blSLdQ2EvWg7iu3FaNbX03bYAsF4+u+yIwAjzXWvtQwiV1DWttDfg88PvGmL5pBY8Hbr0R19I7aYyZNsZM494kZuOvRxMssVvcD4wlXcQaa7TyPtyyvfG1fi76lMJesnYDT4yb2JtdED/uWdtypJsYY/LAF4BfB15krbUJl9SNCrjBTENJF7KGJoEsbnqmfU0fF+BGau/D3aPV787AjdbuJ3fFj1tbtm+LH/vtekhMYS9Zt+Oa1l/T2BCvqPFq4E5rrVr2+lQ8cu5W4Bm4rtvvJFxSoowxG9tsGwYuBu631j6y9lUlZh/wkjYfPwH2x5/fnFRxa22Fn41n4Vaf+dLaV5So2+LHP2psiEdtvwY36XZf/x3pZ14URUnX0NeMMZ/Fjab7W9ySNpcB5+GWCbszwdISYYx5e/zp2bg5o/4b7p/bYWvt3yVW2BozxlyPmyz4C8BnW3bP9dvkscaYr+IGLn0LeAg34vDVuBaLV1hrW69R3zHGfA3Y0IfLpX0VWMD9bDyGm47nj3FL6p1nrT2QYHlrzhjzCdzgpY8BPwReGH+8xVp7XZK1SXI0Gjd5lwLvjh9HccuEvaAfg17s3S1f//v48T6gb8IeS3Ms/l780ew+4I61LKYL3IL7HflT3O/JYVwrxSXW2q8nWJck7w7ciNs/B4aBR4BPA1f3W9CLvRY4gGs4uAy3yszrrLUfSbQqSZRa9kRERER6mO7ZExEREelhCnsiIiIiPUxhT0RERKSHKeyJiIiI9DCFPREREZEeprAnIiIi0sMU9kRERER6mMKeiBw3Y8xNxpienZzTGHO5MSYyxlyYdC0iIp2iFTRE+tgJBredp62QHmKMuRrY3W9L2olI91LYE+lvl7R8/a9w64r+A/CNln2P4pZiet0a1JWUTwKfAaqncI53AJ+g/5a0E5EupbAn0sestbc0f22MSePC3rdb9zWpnfbCEmKtDYAg6TpERDpJYU9Ejpsx5ibgMmut17oNmAD+C/AiIAd8BbcA+0PGmD8G3oTrCt4PvNVa+/k253858J+BpwA+cDdwnbX29pbjIlzr2S3Ae4BdwAxwK3CVtXau5fhp4N3AvwE2AL+Mj32PtXah6bjLgY8DF1lrv9ay7TnAOcB/BLYB9wF/ba39RNP32Bef6jJjzGWN8zZfLxGRtaYBGiLSKf8LGAH+CrgRF/o+Z4y5ArgCF86uBLLA7caYZfcAGmPeg+tCnQX+Mj52AbjNGPOf2ny/c3Bdpd8G3ozrdv5T4PPGmMW/bcaYHcD3gJcBn8aFzruAvwC+GLdmHo9rcN3eHwHeAoTATcaYZ8b7H2WpW/wb8eeXcHRXuYjImlLLnoh0yvestYuhzBgDLlhtBZ5krZ2Jt38V2IPrLv6LeNs5wFXAe621b2s65381xtwBvNcYc7O1drZp35OBlzQNhPiQMeYGXOB7GS44ggtpG4EXWmv/Z9Ox1+FC4mXAx47j9eWA86y11bjm24F7gT8B7rTWzgO3GGM+Cdy7Sje4iMiaUsueiHTK9S1fNwZ43NwIegDW2r24Ltezmo79QyACPmGMmWj+AP4JGAKe0XJ+22bE67Xx40sA4ha+fwv8qCnoNbwX1zr3kuN7eXyoEfTib/4r4Kctr0NEpOso7IlIp9zb8vWh+HFf64HxvvGmr88GPOAeXHdo80ej1W2y5Rz/0npSa+2DwGHgjHjTRmAQ+EmbYw8CDzYdeyytrw/gcZa/DhGRrqNuXBHpiHgkazsrbfdaPo+A569y/FGBbY0dz+sQEek6Cnsi0g1+BjwPOGCtParFbgVnt24wxkzhRts2WuEexQ34+M02x44CU8DuEy9XRGT9UDeuiHSDT8aP1xhj/NadxpjWLtx4s3lxy7a3xo93AFhrQ+ALwNOMMc9rOfZK3N/Az51kzSuZA8Y6fE4RkZOmlj0RSZy19vvxMmNXA7uNMbcBD+Ba3s4FXoCbsqXZ3bjRrzfiWgYvAl4KfB03h17D24DfBe4wxnwI+DnwbODlwD/jpoTppO8Av2OMeStwAIistZ85xnNERE4bteyJSFew1r4TNzffA8AbgQ/ipmfJ4aZTafVD4MXAb+Emc3428HfA78Uteo3z3gdcANwGvAo3avh83Gjc51tr6x1+Ka8HvombSubTwD92+PwiIifEi6ITWQddRCR5jRU0rLWXJ12LiEi3U8ueiIiISA9T2BMRERHpYQp7IiIiIj1M9+yJiIiI9DC17ImIiIj0MIU9ERERkR6msCciIiLSwxT2RERERHqYwp6IiIhID1PYExEREelh/x9k7Nn6t8oangAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(8,6))\n", "sns.lineplot(x='Timepoint',y='prob',hue='class',data=prob_df,\n", " ci=95, markers=True,marker='o',dashes=False,\n", " hue_order=['appr','retr'],palette=['C0','C1'])\n", "plt.legend(loc='upper right',bbox_to_anchor=(1.25,1))\n", "_=plt.title('Class Probabilities')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Test Accuracy\n", "\n", "The trained model was tested on the near-miss segments of the 19 held-out participants. Following figure shows temporal and overall accuracies on the held-out participants. The model performs resonably well from the 1st timepoint (TP) itself, with a mean accuracy of __0.58__. The mean accuracy steadily increases to __0.63__ by the 7th TP. \"Overall\" accuracy is the mean accuracy across TP, which is __0.603__. " ] }, { "cell_type": "code", "execution_count": 33, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "test_acc_df = pd.DataFrame(columns=['Subj','Timepoint','Accuracy'])\n", "for SUB in test_acc:\n", " for TP in test_acc[SUB]:\n", " temp_df = pd.DataFrame([SUB, TP, test_acc[SUB][TP]], index=['Subj','Timepoint','Accuracy']).T\n", " test_acc_df = pd.concat([test_acc_df,temp_df],axis=0,ignore_index=True)\n", " \n", "test_acc_df['Accuracy'] = test_acc_df['Accuracy'].astype(float)" ] }, { "cell_type": "code", "execution_count": 35, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgkAAAGdCAYAAACYfeAwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA3dklEQVR4nO3debxcRZn4/0+IkBARjIIaNIDL+ICOCqLw1UFAwQ11BgdURiQBwWXcgN8IKCAiIAhu4KgogoZFXEBBUQGVEZeI4ESD4MCDRJYoEVERwSQsN/n9Uaex05y79E33PXf5vF+v++p769SpU9Xdt8/TdarqTFu9ejWSJEmd1mm6ApIkaXwySJAkSbUMEiRJUi2DBEmSVMsgQZIk1TJIkCRJtQwSpHEoIvaNiNURsXPTdakTEQsiYkrPn657jSJi5ypt3+ZqJvXOw5qugCavLk8iT8zMm/tVFzUvIv4NeDPwXOCRwJ+AK4BPZOYPG6xa4yJiK+D/qj93zMwfN1kfqcUgQf20T8ffL6CcJE4DOj8E7xiTGmnMRcR04AuU98P/AacAy4DNgXnA5RFxQmYe3lwtG7c/cDewAngjD/3/kBphkKC+ycxz2v+OiIdRgoQrOrdNZhHxiMy8u+l6NOhoSoBwFrB/Zj7Q2hARJwLfAN4bETdm5uebqGCTr1FErEt5fs4D7gLeHBHvGu/vmSr4m5GZy5uui/rHIEGNi4hpwFuBA4CtgFXAz4FjMvMHbfm2AG4CPkD5Rno4EMDvgQ9m5hciYjPgY8CLgHUpJ6D/bP/AjYgFwHzgMcBHgVcAM4GfAYdk5i866vcw4L+qfZ4E/B34EXBUZl4zSP2uAw4FngZ8Bdg3IrYE3gXsBGwGTK/ynZqZp4/y6aObciPiaOD9wJZVe+YBmwDXA+/NzO905J8JHAvsDcwGrgGO7KJujwHeDdwKvKU9QADIzOURsTfwW+C4iDgnM++LiCuBLYDHd+4TES8FLgEOzsyTq7TRvIfG7DUaxqso78Uzgb8CBwOvAx5yvIjYEDgM+HfgiZT34nXAJzPzy235Hkf5/3gl8HhK8HE1cFJmfq/KczNwc2bu3HGMnYEfAPtl5oIqbV9Kb9CLgecB+1KenzcBCyLiJZTekOcCc4B7gaso/5cPuZQUEU8BjqjKewzl0lPr9VoUEVdT3m9bZOaqjn1fA3wVmJ+ZZ9U+o+oZBy5qPDgb+CRwI+VD+/3ARsD3IuJfa/K/EvgE8HXgEEo37eerk82Pq78Pp3yQ7A18fJDjXkL5QDsaOBl4DvDDiPjnjnxfBD4E/K463meAFwJXRMQ2NeXuDpxalf8u4OIqfWdgR+BbVTnvA+4HPhcR7x2kjiMxmnLPpFz++UiVfxPgwuok2u5LlJP8/1aPP6E879uOsG6tAOzszFxZlyEz/0gJ5uZQTkCt+j0GeFnNLvOAB4Bz29K6fQ/tzti+RkPZnxK4/DgzfwX8knLJYQ0R8Ujgp5T39rWUdh5HCbBe2ZZvC2AR8DbgckrQ8WHgb8Cua1nXjwB7AZ8DDgSySt8XeBSlt+idlP+5rYDLIuIFHe14TlW/1wEXVPn/G5gBPL/K9jlgLiWI6LQ/Jeg5by3bohGwJ0GNiohXU07kb8nM09rST6F8sz8lIi7KzPZBkFsBT8vMW6q8XwGWUk4U787Mj1X5PhMRs4F5EXFQZt7TcfhbgD1aZUfE1ynfZj5CdXKKiBcDr6UEHHu15f0q5YPuE5STbbunA8/MzOs60s/OzM90tP/jwP8A74mIj2Tm/cM8ZXVGU+6fgFe1tecHlG9+bwHeW6W9hHIyPTMz920r+0eUD/eRaAVcvxgyV3kuXw88A/gh8GXKiWYe5YTdOvYjqjpdXAUXo30PjfVrVCsiNgVeChzXVr8zgZMjYquO+h1f1XuNdlbltH/h+zSwKfCyzLx0iHyjsT6wTc0lhjdl5t87jvUZ4NeU99OPq7RpwAJKQLBdFRS1nNBWv3OAkygBwaVtZbYCh89m5oq1bItGwJ4ENe0NlG/+F0bExq0fyuj3iyhdzv/Usc+FrQABIDPvoHyjWQV8qiPvjymXHbaoOfZJ7SeOzFwEfA/YNSI2qJJfXT1+sCPv1VX9doiITTrK/XbNyYf2D9GImBkRj6Z8+/ousCHlEkDXRlnuKR3t+TlwD2s+17tXjx/uON6F/OMb5HA2rB7vGibf36rHjapj/IXy/L6q+gbdsicwi3IibRnNe2hMX6Mh7Ev5HG7vNv8ipffiwd6E6uS5F3BdZ4BQ1XtVle9RlAD3ks4AoT3fWji1bgxCx/O2QfW8DQBXAtu3Zd2aEuh8oSNAWKN+mflXSmD+b1VZLftRnq8z1rIdGiF7EtS0rYBHALcPkeexwA1tf/+2Js+dwLLMvLcmHeDRPNRDThKUsQ4voYy8/zXluu+qQfL+mnIifSJrzs64oSYvVeBxNKVnYm5Nltl1+w1nlOXWPYd/Zs3n6UmUtte15zrKeJDhrHHyH0JdMHEmsAelXa0T4zzKa3pRW77RvIfG9DUa5FjTKIHAr4B1quv0LQuBfSLivdWYjI2rY18yTLFPAaZRLln0w2DP25OBD1J6RR7Zsbm9B6cVrI2kfqdRxs3sQ+lZmUYJEhZXAb3GgEGCmjaNcoJ9/RB5ru34e2CQfIOlt44zVgYb7X0u5drxaZSBj3+m1Hk3ynXj0fbsjabcwZ6rXj9Prdfu2ZSxDIN5dvV4TVvaxZT3xjzgtGpQ6k7AZzLzvrZ8o3kPjfVrVGcn4MnV778ZJM8rgQt7eMx2g61jMtR54SHPWxVY/Qh4OGVszzWUnp1VlEsNLxpN5TLzpxFxLeWSw8nALpReoXeMpjyNjkGCmvYb4KnAz2rGDPTbVpRr1u2eRjkptC5n/JZyYtiK8o2vMy+UQWdDqrrMX0m55v3Wjm2jHkzWr3IrrbY/ldJr0m6rEZbxHcpI9zdExLE1PT1Ul2v+jbJ2whWt9Mx8ICLOBQ6MiCcB/0EJCM7sKKIn76E+P5d13kh5buZRTqidPks5QV5IGUNyJ/CsYcq8kXLy33oEx/8L5VJKpyeNYN92u1DGQLwxM7/QviEijuvI2+qJGEn9oAxgPCUitqM8Fyspl2M0RhyToKadRXkfnlC3MSIe28djH1p1YbaO9WzK6O/L2k42F1aP7+3I+8/AvwI/qcZEDKf1zX2Nb+oRMYcybW+0+lUulBkHUEb5t5e9OyO71EBm3k6Zkro5cGo1t769rPUpA043AI7s6CGAfwQE8yjdzpmZV3bk6dV7qJ/PZWedNqKMr/huZn41M8/v/AG+Cbw8IuZU1+q/BDwtIvavKW8aPDiW4+Jqv4cENu3vYcoJe8uIeHzb9hnA27tszmDP20tYczwClGmYvwbeGBFPH6Z+UN4bKynvwVcDX6vGK2iM2JOgRmXm+RHxBeAd1Un6W5RvTU+gTId7Ct1/sxmpzYFLI+KblOl376CsePfgSTEzv1fNZNgLmB0R3wIeR/kgXUmZPjeszLw7Ir5L+Ua9gjKLYnPKbIKbqB8z0Vi5VdmXRsRFwPxqQNwllO7xt1C67zunig7mqKpO+wHPjYgvseaKi08EPlS3kFJm/jIirqF09W9Imf7Xmacn76F+Ppc1/oMyU+BrQ+T5GmVg43zKFNwjKV33p1cn4J9QTszbUD7LWyucvoMyVfLiiDiTMnNkfcoJ+2bKOgtQpozuBXy/momwXlVGt4sj/QT4A/DRavrl7yg9BftQLj08o5UxM1dHxH7AZcBVEXEG5b30SMrll0so0yFb+e+MiPMpg1OhZu0I9Zc9CWpcZr6Rf3S5vpfyITGfMtq+X3PToYwCv52ysM7BlA/TnWpGXe8NvIdywvgoZf75D4HnZWY3A8TeAHyesnjOJymDHo/goTMyutWvcqHMZf8YsB2l7S+gLOQz4oFjmflAZu5d7fc7ynP9WcriR4uBF2bmUK/zmZQAYRVlalzdMXr1Hurnc9luf8paD98cIs/3KNf294NywqQEPR+mrFPxUcp6EE+hbSBnZt5EWfPjDMog3FMogcFsyiyNVr6F/GN2xYcp7+tzqAnEhlJ9s38pZSbDO6t6PY0yjuMhU1+rmTTPpUyjfS3leT6IMqNjYc0hWoNWb6T832kMTVu9ekrfyE1TUFQrLmbmWA5mlDQK1XiEK4HDM7P2kpL6x54ESdJ49g5KL8MXhsuo3nNMgiRpXImIh1Mu+TydcgnotMz8Q7O1mpoMEiRJ480mlNkc9wDnU+5ToQY0Oiahmm5zDGUU7GzK9JgjMvOyYfa7mTKIrM6Nmdm5BKskSepS0z0JCyjLrp5MGbm6L2Xazk6ZecXgu3EQZV51u80pd0T77kNyj9CiRYseoIzT+NtweSVJmgQ2BFZtu+22tfFAY0FCNWJ1L9a8J/xZlDmzJ1Ju11qrusFMZ3mte9yvzWpc6wDTpk+fPtw685IkTXgDAwMwxCSGJnsS9qSMWH1wcYzMXFktrvHBapWxZV2U93rgpsz86VrU6W/Tp0/faOutt16LIiRJmhgWL17MwMDAoL3nTU6B3Aa4vmat9asoq4htPdKCImIbylry5/asdpIkTXFN9iTMAX5fk97qPdi0i7L2rh7X+sYfAwMDZObaFiNJ0rhXXW4YVJM9CetT7oDWaWXb9mFFxDqUsQ2/zMzrelQ3SZKmvCZ7ElYAM2rSZ7ZtH4mdgMcDH+9FpaZPn07EiG5wJ0nShFaNSRh0e5M9Ccsolxw6tdJuG2E5e1Nu6vKlXlRKkiQVTQYJiyn3Mu9c76B1//GrhyugWoxpD+DyzBxpUCFJkkagySDhfGBd4IBWQnXS3w9Y2DrpR8RmEbHlIGXsRrkP+VoPWJQkSWtqbExCZl4ZEecBJ0XEHGAJ5f7vm1NWXmw5izLuoO62vntTBj9+rb+1lSRp6ml6WeZ5wLHV42zgV8BumblwuB0jYkPgFcC3M/OuvtZSkqQpqNEbPI03ixYt+qsrLkqSpopqdsNd22677SPrtjc5JkGSJI1jBgmSJKmWQYIkSarV9MBFSdIgDj/8cK688soxPeb222/P8ccfP6bH1PhlT4IkSaplT4IkjVOj/Ua/yy67AHDZZZf1sjqaguxJkCRJtexJkCQ1wjEX4589CZIkqZY9CZKkRjjmYvyzJ0GSJNUySJAkSbUMEiRJUi2DBEmSVMsgQZIk1TJIkCRJtQwSJElSLYMESZJUyyBBkiTVMkiQJEm1XJZZkhr09xX3ccttd/al7P9bcntPy9t809k8fP31elqmxjeDBElq0C233clxn/1+X8rudblHvmVXnvbkx/a0TI1vBgnSJDbZb8U72dsnNc0gQZKkPhjrILYfAaxBgjSJTfZb8U729klNM0iQJPVFPwdlwvgfmDmaIHa8BbAGCZKkvujnoExwYOZYcJ0ESZJUyyBBkiTVMkiQJEm1DBIkSVItgwRJklSr0dkNETEDOAbYB5gNXA0ckZkjmvsREa8HDgKeDtwLXAMckplX9aXCmpQmw4InktQPTU+BXADsAZwM3AjsC1wcETtl5hVD7RgRxwGHAWcDpwEPB54FPK5/1a3n0rCSpMmosSAhIrYD9gIOzsyTq7SzgGuBE4Edh9j3+cDhwB6ZeUH/a6vJbDIseCJJ/dBkT8KewP3A6a2EzFwZEWcAH4yIOZm5bJB9DwR+npkXRMQ6wKzMvKf/Va432ZeGtadEkqamJoOEbYDra07uVwHTgK2BwYKEXYAvR8TxwDuBDSLiFsp4hi/2qb6SNKbu/M13ue9vvxv1/rcv+nzX+6y34ROY/U8vGfUxNbk0GSTMAX5fk94KDDat2ykiZgOPplyqGKCMS/gL8HbgnIhYvjaXIAYGBsjM0e4+KmN9vG7Nnz+f+fPnd73f2972NgA+/elPj+q44/15gebrOHfuXFZPe1jf1sfv9dr4UNbHn7b6AZYuXTps3k022YSZM2f2vA4ty5cv73mZK1eu5I477hhR3rlz5/b8+P22fPnyEb12E7Ft0F371lsHVvxx+Lyjcfetvf9sWf8xc7lvFWu0b2BgYMh9mgwS1qfMSOi0sm17nQ2qx0cD/y8zrwSIiAsogx+PAhynoCmjn+vj96PcI9+yK1vMecSI8s6cObOvQdDNy+7uaXmbbzq7p0GN3+jHtxV/XMoNX/5wX8ruR7lP3esQpm/cXfDWZJCwAphRkz6zbftg+wHc1AoQADLz3og4HzgwIjYY7RiF6dOnExGj2XXUxvp4Y20yt298tK23J7qxMGvWrBE/d/+35PYJEwS1bhDU3ftiYr1+3bx2w7VtPF5O6aZ9E+uVKzrbt3jx4iF7E5pcTGkZ5ZJDp1babYPs9xdKD0RdP+jtlPEMG6117SRJmuKa7ElYTP23/u2rx6vrdsrMVRGxGHh8zeYnUMYp/KWH9ZQk9YGXU8a/JnsSzgfWBQ5oJVQrMO4HLMzM26q0zSJiy459zwPmRsSL2/bdEHgt8NPMHOxShSRJGqHGehIy88qIOA84KSLmAEuA+cDmlJUXW84CdqJcRmg5lRJcfC0iPg7cCewPPBJ4b98rL0nSFND0DZ7mAadUj5+g9CzslpkLh9opM5cDLwS+QVkn4QTgLmDX4faVJEkj0+i9GzJzJXBI9TNYnp0HSf8D5cZQ0pD+vuK+CbeOwMPXX6/n5UpSt5q+wdOEMZFONJ5k1jQR1xF42pMf2/NyJalbBgkjNJFONN2eZPoZAIFBkCRNVAYJ6msABM0HQZKk0TFIkCSpDz6/6A9c/6fRzcg/9NKbut5ny43X543bPm5UxxtM07MbJEnSOGVPgjSJjce18aWpotff6ptgkCBpwjIIkvrLIEGaxDyZSVobBgmSJiyDIKm/HLgoSZJq2ZOgKW9trmt7TVvSZGaQ0AMOnpIkTUYGCRrWZA+CDLYkqZ5BQg94kpEkTUYGCRqWQZAkTU3ObpAkSbUMEiRJUi2DBEmSVMsgQZIk1TJIkCRJtQwSJElSLYMESZJUyyBBkiTVMkiQJEm1DBIkSVItgwRJklTLIEGSJNUySJAkSbUMEiRJUi2DBEmSVMsgQZIk1TJIkCRJtR7W5MEjYgZwDLAPMBu4GjgiMy8bZr+jgffXbLo9Mx/X63pKkjQVNRokAAuAPYCTgRuBfYGLI2KnzLxiBPu/BVje9veKHtdPkqQpq7EgISK2A/YCDs7Mk6u0s4BrgROBHUdQzFcz86/9qqMkSVNZk2MS9gTuB05vJWTmSuAMYIeImDOCMqZFxIYRMa1PdZQkacpqMkjYBrg+M+/pSL8KmAZsPYIybgXuAu6KiM9HxKN6W0VJkqauJsckzAF+X5O+rHrcdIh97wT+G/gZcB/wIsr4hGdHxPaZee9oKzUwMEBmrpE2d+7c0RbXmOXLl7N06dJh803EtoHta7F9489I2waTu30TsW0w9do3MDAwZP4mg4T1gbqT+cq27bUy85SOpPMj4lrgU8A84HM9qaEkSVNYk0HCCmBGTfrMtu3d+AzwYWAX1iJImD59OhFRs+Xu0RbZiFmzZg3SjjoTq21g+9Zk+8aT7toGk7t9E6tt0F37Jl7rHtq+xYsXD9mb0OSYhGWUSw6dWmm3dVNYZq6iXL5wXIIkST3QZJCwGNgyIjboSN++ery6m8IiYl1gLnDH2ldNkiQ1GSScD6wLHNBKqFZg3A9YmJm3VWmbRcSW7TtGxCY15R1CuVRxad9qLEnSFNLYmITMvDIizgNOqtZEWALMBzanrLzYchawE2VaZMstEfFlysJL9wIvpKzc+BPg3P7XXpKkya/pZZnnAcdWj7OBXwG7ZebCYfb7IvAvwGuA9YCbq3JOyMwH+lZbSZKmkEaDhGqFxUOqn8Hy7FyT9qY+VkuSJOGtoiVJ0iAMEiRJUi2DBEmSVMsgQZIk1TJIkCRJtQwSJElSLYMESZJUyyBBkiTVMkiQJEm1DBIkSVItgwRJklTLIEGSJNUySJAkSbUMEiRJUi2DBEmSVMsgQZIk1TJIkCRJtQwSJElSLYMESZJUyyBBkiTVGnGQEBFHRsScflZGkiSNH930JBwD3BoRF0XE7hExvV+VkiRJzesmSNgeOAN4AfA14HcR8aGIeGpfaiZJkho14iAhM3+emW8F5gD7ATcAhwLXRcSPImKfiFi/T/WUJEljrOuBi5m5IjPPysydgABOAp4MLACWRcSnI2LrntZSkiSNubWd3XATsAi4DpgGbAC8CVgUEd92oKMkSRPXqIKEiHh6RHwMuA34CrAlcBzwJGAu8EHghcDne1RPSZI0xh420owRsQHwH8D+wHOBVcAlwGnAtzNzVVv2oyLiHuD9PayrJEkaQyMOEoDbgZnA7yjTIc/IzN8Nkf8WwIGMkiRNUN0ECd8DPgdc3NFrUCszv0K5FCFJkiagEQcJmbl7H+shSZLGmW6WZd4lIk4YYvsJEfHC3lRLkiQ1rZvLDYcBdw2x/YlVnh+MtMCImEEZ37APMBu4GjgiMy/rol5ExHeAlwOnZOZB3ewrSZLqdTMF8lnAz4bYfmWVpxsLgIOBc4ADKTMmLo6I5420gIh4BbBjl8eVJEnD6CZI2Aj4+xDbV1B6A0YkIrYD9gIOzcxDM/M04EXArcCJIyxjPeDjlFUfJUlSD3UTJPwe2HaI7dsCf+iivD2B+4HTWwmZuZJyE6kdRrha44GUaZYf6eK4kiRpBLoJEr4NzI+IXTs3RMQuwHzgO12Utw1wfWbe05F+FWWJ562H2jkiHge8Dzg8M5d3cVxJkjQC3Qxc/CCwB3BpRFwMLK7St6YMGvwDcGwX5c2h9E50WlY9bjrM/icASRnP0DMDAwNk5hppc+fO7eUhxsTy5ctZunTpsPkmYtvA9rXYvvFnpG2Dyd2+idg2mHrtGxgYGDJ/N+sk3B4RzwdOpQQFu1WbVgMXA+/IzGWD7V9jfeDemvSVbdtrVeMZ5gE7ZebqLo4pSZJGqJueBDLzFmC3iJgNPKVKvjEz7xzFsVcAM2rSZ7Ztf4iImAacAnwtM38yiuMOafr06UREzZa7e32ovpo1a9Yg7agzsdoGtm9Ntm886a5tMLnbN7HaBt21b+K17qHtW7x48ZC9CV0FCS1VUPDz0ezbZhnlkkOnVtptg+z3amA74PCI2KJj24ZV2u2ZWRtkSJKkkRlVkFDdEfKR1Ax8zMxbR1jMYuDAiNigY/Di9tXj1YPst1l13P+p2bZf9fNyyh0qJUnSKHUVJETEXsCRwFZDZJs+wuLOB94NHACcXJU/g3KSX5iZt1VpmwGzMvP6ar+LgJtryrsA+BZlCuUvRlgHSZI0iBEHCRGxO3AucAPwWeCt1d8PA3YHfkWZJjkimXllRJwHnFStibCEMo1yc2DftqxnATtRpkWSmUuqvJ31A1iSmReOtA6SJGlw3ayT8G7gOsqUx6OqtM9n5l7Ac4DgH9MiR2oeZRDiPOATwLrAbpm5sMtyJElSj3VzueGZwHGZuTIiZlVp0wEy89qIOA14L/CNkRZYrbB4SPUzWJ6dR1jWtJEeV5IkDa+bnoTpwJ+r31szBzZq257AP/eiUpIkqXndBAm/o4wXoJpe+EfWvJdDMPQNoCRJ0gTSzeWGnwK78o/xCN8EDoqIFZRg4+2UmQeSJGkS6KYn4dPA5RHRWi75CMolhqMpgcMSyuBGSZI0CXRz74af07bKYmbeAWwdEc8EBoDrMnNV76soSZKaMKIgISIeDvwXcGVmXtq+LTN/1Y+KSZKkZo3ockNm/h04HJiY98aUJEld62ZMwhLgcf2qiCRJGl+6Hbj4poh4dL8qI0mSxo9upkDeDfwFyIg4E/gNsLwzU2ae1aO6SZKkBnUTJCxo+/3gQfKsptyQSZIkTXDdBAkv7FstJEnSuNPNOgk/7GdFJEnS+NLNwEVJkjSFjLgnISKOGj4XqzPz2LWojyRJGie6GZNw9BDbVgPTqkeDBEmSJoFugoQnDrL/kymzHTYC5veiUpIkqXndDFy8ZZBNSyLie8CPgP0oyzdLkqQJricDFzNzNXA+MK8X5UmSpOb1cnbDeoBLNkuSNEn0JEiIiOcABwLX9aI8SZLUvG6mQP52kE2PAh4BPAAc0ItKSZKk5nUzu+FWyhTHdquBXwA3AKdl5s09qpckSWpYN7Mbdu5jPSRJ0jjjssySJKnWiIOEiHhdRAx6G+iIODMi9uxNtSRJUtO66Ul4B7BqiO0DwDvXrjqSJGm86CZI2Ar45RDbfwk8be2qI0mSxotugoSHU3oLBrOaMhVSkiRNAt0ECTcBOwyxfQfKNElJkjQJdBMkXAC8JiL279wQEW8EXgN8vVcVkyRJzepmMaUPAf8GnBYRBwOLq/RnUcYiJHB8T2snSZIa081iSndHxL8AJwCv4x+DFO8ETgWOzMy/dXPwiJgBHAPsA8wGrgaOyMzLhtlvb2D/qg6zgWXAD4Cjh7iltSRJ6kJXiyll5l2Z+TZgY+Cx1c/GmfmOzPzrKI6/ADgYOIdyg6hVwMUR8bxh9nsW8HvgI8B/AmcCLwN+HhGPG0U9JElSh24uNzwoM1cDd6zNgSNiO2Av4ODMPLlKOwu4FjgR2HGI4x9aU943gEXAGyjBgyRJWgvdrLj49oj4/hDbvxsRb+ni2HsC9wOntxIycyVwBrBDRMzpoiyA1mWGR3a5nyRJqtFNT8K+wP8Osf0G4I3AZ0dY3jbA9Zl5T0f6VcA0YGvKWINBRcSjKG3YDDiqSh5yPIMkSRqZboKEfwK+MMT2XwOv76K8OZRxBZ1agcGmIyjjBuDR1e9/Bt6RmT/oog4PMTAwQGaukTZ37ty1KbIRy5cvZ+nSpcPmm4htA9vXYvvGn5G2DSZ3+yZi22DqtW9gYKg1ErsLEtYFZg6xfeYw2zutD9xbk76ybftw/p2yEuSWlLEIrvgoSVKPdBMk3AC8GPjYINtfAizporwVwIya9Jlt24eUmT+qfr04Ii4Ero2IezLzk13UYw3Tp08nImq23D3aIhsxa9asQdpRZ2K1DWzfmmzfeNJd22Byt29itQ26a9/Ea91D27d48eIhexO6mQL5JeAlEXFsRKzXSoyIdSPiA5Qg4dwuyltGueTQqZV2WxdlkZk3UWY37N3NfpIkqV43PQkfB14OHAH8Z0RcX6VvCTwK+DHw0S7KWwwcGBEbdAxe3L56vLqLslrWp1x+kCRJa2nEPQmZeT+lt+A9wO8osxO2AZYChwK7UGYljNT5lHEOB7QSqhUY9wMWZuZtVdpmEbFl+44RsUlnYRGxLWVGxKIu6iBJkgbR1WJKVaBwUvXzoOoE/QnKcs2Prtm1rqwrI+I84KRqTYQlwHxgc8p0y5azgJ1YMwC5JSK+ClwD3AM8nTL98m7g2G7aJEmS6o1qxUV4cI2CN1BOzs+gnMRv6LKYeZST+jzKPRh+BeyWmQuH2e9TwK7A7sAsyviGrwLHVmMTJEnSWuo6SIiIl1ICg38F1qMEBh8AvpaZv+6mrGqFxUOqn8Hy7FyTNmh+SZLUGyMKEiJiC0pgMB94AvAnypiC11Pu2vj1flVQkiQ1Y8ggobol8xspYwIGgG8B7wS+Qxk74HRDSZImqeF6Es4GfgscBHwpM//c2tDdYiGSJGmiGW4K5L3AFsC/AS+LiJEslSxJkiaB4YKEOZRehEdTehX+EBFnRMSOdLcmgiRJmmCGvNyQmX8FPgl8MiKeDewP/AdlHYM7gNXARv2toiRJakI3Ky7+IjPfTuld2Idya2iA0yNicUQcGRFP70clJUnS2OvmBk8AZOa9mXluZu4CPBn4IGUhpGMY3f0WJEnSONR1kNAuM2/OzKMogxt3A1wvQZKkSWLUyzK3y8zVwCXVjyRJmgTWqidBkiRNXgYJkiSplkGCJEmqZZAgSZJqGSRIkqRaBgmSJKmWQYIkSaplkCBJkmoZJEiSpFoGCZIkqZZBgiRJqmWQIEmSahkkSJKkWgYJkiSplkGCJEmqZZAgSZJqGSRIkqRaBgmSJKmWQYIkSaplkCBJkmoZJEiSpFoGCZIkqdbDmjx4RMwAjgH2AWYDVwNHZOZlw+z378DrgO2AxwK3AhcBx2XmXX2ttCRJU0TTPQkLgIOBc4ADgVXAxRHxvGH2Ow3YCjgbeBdwafW4MCJm9q22kiRNIY31JETEdsBewMGZeXKVdhZwLXAisOMQu++ZmZd3lLcIOLMqc0HvayxJ0tTSZE/CnsD9wOmthMxcCZwB7BARcwbbsTNAqFxQPW7VwzpKkjRlNRkkbANcn5n3dKRfBUwDtu6yvMdVj39ay3pJkiSaHbg4B/h9Tfqy6nHTLss7DBgAvr42lRoYGCAz10ibO3fu2hTZiOXLl7N06dJh803EtoHta7F9489I2waTu30TsW0w9do3MDAwZP4mexLWB+6tSV/Ztn1EIuL1wP7ASZm5pAd1kyRpymuyJ2EFMKMmfWbb9mFFxAso4xi+DbxvbSs1ffp0IqJmy91rW/SYmjVr1iDtqDOx2ga2b022bzzprm0wuds3sdoG3bVv4rXuoe1bvHjxkL0JTfYkLKNccujUSrttuAIi4lnAN4FfAa/LzKH7TSRJ0og1GSQsBraMiA060revHq8eaueIeDJwCfBH4BWZ+fee11CSpCmsySDhfGBd4IBWQrUC437Awsy8rUrbLCK2bN8xIh4HfJey+NJLM9MZDZIk9VhjYxIy88qIOA84qVoTYQkwH9gc2Lct61nATpRpkS2XAE8CTqKsqbBD27YlmXlFP+suSdJU0Oi9G4B5wLHV42zK2ILdMnPhMPs9q3o8tGbbmYBBgiRJa6nRIKFaYfGQ6mewPDvXpE2rySpJknqo6Rs8SZKkccogQZIk1TJIkCRJtQwSJElSLYMESZJUyyBBkiTVMkiQJEm1DBIkSVItgwRJklTLIEGSJNUySJAkSbUMEiRJUi2DBEmSVMsgQZIk1TJIkCRJtQwSJElSLYMESZJUyyBBkiTVMkiQJEm1DBIkSVItgwRJklTLIEGSJNUySJAkSbUMEiRJUi2DBEmSVMsgQZIk1TJIkCRJtQwSJElSLYMESZJUyyBBkiTVMkiQJEm1DBIkSVKthzV58IiYARwD7APMBq4GjsjMy4bZbztgX2B74BnAupk5rb+1lSRpamm6J2EBcDBwDnAgsAq4OCKeN8x+uwFvqn5f0rfaSZI0hTUWJFS9AXsBh2bmoZl5GvAi4FbgxGF2PxXYMDO3BS7tb00lSZqamuxJ2BO4Hzi9lZCZK4EzgB0iYs5gO2bm7Zm5ov9VlCRp6moySNgGuD4z7+lIvwqYBmw95jWSJEkPanLg4hzg9zXpy6rHTcewLg8aGBggM9dImzt3bhNVWSvLly9n6dKlw+abiG0D29di+8afkbYNJnf7JmLbYOq1b2BgYMj8TfYkrA/cW5O+sm27JElqSJM9CSuAGTXpM9u2j7np06cTETVb7h7zuqyNWbNmDdKOOhOrbWD71mT7xpPu2gaTu30Tq23QXfsmXuse2r7FixcP2ZvQZE/CMsolh06ttNvGsC6SJKlDk0HCYmDLiNigI3376vHqsa2OJElq12SQcD6wLnBAK6FagXE/YGFm3lalbRYRWzZTRUmSpq7GxiRk5pURcR5wUrUmwhJgPrA5ZcnllrOAnSjTIgGIiM0pSzkDbFelHVn9fXVmXtTf2kuSNPk1eu8GYB5wbPU4G/gVsFtmLhxmvydW+7Vr/X0mYJAgSdJaajRIqFZYPKT6GSzPzjVpl9PWsyBJknqv6Rs8SZKkccogQZIk1TJIkCRJtQwSJElSLYMESZJUyyBBkiTVMkiQJEm1DBIkSVItgwRJklTLIEGSJNUySJAkSbUMEiRJUi2DBEmSVMsgQZIk1TJIkCRJtQwSJElSLYMESZJUyyBBkiTVMkiQJEm1DBIkSVItgwRJklTLIEGSJNUySJAkSbUMEiRJUi2DBEmSVMsgQZIk1TJIkCRJtQwSJElSLYMESZJUyyBBkiTVMkiQJEm1DBIkSVKthzV58IiYARwD7APMBq4GjsjMy0aw7+OBjwMvoQQ7/wMcnJk39a/GkiRNHU33JCwADgbOAQ4EVgEXR8TzhtopIjYAfgC8APgg8H7g2cDlETG7nxWWJGmqaKwnISK2A/aifPs/uUo7C7gWOBHYcYjd3wY8Bdg2M39Z7Xtxte/BwFH9q7kkSVNDkz0JewL3A6e3EjJzJXAGsENEzBlm35+1AoRq3+uBy4DX9qe6kiRNLU0GCdsA12fmPR3pVwHTgK3rdoqIdYBnAv9bs/kq4KkRMauH9ZQkaUqatnr16kYOHBHXAr/PzJd2pD8N+DVwQGaeUbPfxsAdwOGZeULHtrcBnwKekplLuq3TokWLVlEClDWss06JpVataua56tY665QmrFq1agR5J1bbwPatmdf2jSfdtK3kn7ztm2htg9G1j9Uje63HhWmt1+QhdV697bbb1nYaNDm7YX3g3pr0lW3bB9uPUe47nFWU3pW/rZE4wn/48aKbf8qJ1jawfWvmtX3jSbcnxMncvonWNpj87RskoNmQcu6r1WSQsAKYUZM+s237YPsxyn2HtO222zY6JVSSpPGkyTEJy4C6wYmttNsG2e8vlF6EwfZdXZUtSZLWQpNBwmJgy2rNg3bbV49X1+2UmauAa4Dn1GzeHvhNZi7vVSUlSZqqmgwSzgfWBQ5oJVQrMO4HLMzM26q0zSJiy5p9/19EbNO2bwAvAs7rd8UlSZoKGpvdABARXwV2pyyvvASYDzwXeGFmLqzyXA7slJnT2vZ7BPBL4OHAR4EHgP+PaupkZv557FohSdLk1PSyzPOAU6rHT1B6FnZrBQiDycy7gZ2BnwDvA46lXL7YyQBBkqTeaLQnQZIkjV9N9yRIkqRxyiBBkiTVMkiQJEm1DBIkSVItgwRJklTLIEGSpEksIhZExM1tf28REasjYt/h9vWGRg2oVpY8BtgHmE1ZgvqIzLys0Yr1QETMAQ6kLJH9HGADyuJYlzdZr16IiOcC+wIvBDYH/gz8FDgyM29ssGo9ERHPAY4Ang08BriLsv7IMZn50war1jcRcShwInB1Zm7dcHXWSkTsDPxgkM1bZeb1Y1idvqn+D48Gnk9ZW2cJ8PHMXNBgtSYtexKasQA4GDiHckJdBVwcEc9rslI9EsBhwBOAXzVcl147DPh34PuU1+00yqJev4yIrRqsV688mfLF4XPAO4APU4KFH0XEi5usWD9ExOOAI4G/N12XHjuZ8gWk/WewG+ZNKBHxcmAhJTh4H/BflP/HuU3WazKzJ2GMRcR2wF7AwZl5cpV2FnAt5RvNjs3VricWARtn5p8jYnfggobr00sfA16fmfe1EiLiK5Qbjh1G6WWYsDLzK8BX2tMi4lTgt5Sg6HtN1KuPPgT8L+XL0iObrUpP/TAzL2y6Er0WERtRvmCdmpkHNlydRkXErLG6kaFBwtjbE7gfOL2VkJkrI+IM4IMRMSczJ+ytrqslsyelui73zPxNRPwamAw9CQ+Rmcsj4g4m10m0Fay/gXJJ7ORma9N71f1tVmTmA03XpYdeT3kfHgUPtvGezBzTZYMj4tnACZTLHVB6Ng7LzKsj4jXAV4EdOm8vEBGHVfttnplLq7TnAx+gXJ6dDlxRlbWobb8FlHscPRf4b2AHyk0O942IFwDvqvZ/LPDHatvhmbmiF+31csPY2wa4PjPv6Ui/iuoGVWNeI41aREyj/HP+qem69EpEPCIiNo7ieOCfgQk/Xqales3+GzgzMxc3XJ1+OBv4G7AiIr4bEc9oukI9sitwPbBbRCyltPEvEfGhiJg+FhWIiKcDPwKeRjnhnwA8Hfhxdcnx25TLV6+t2f21wBVtAcKuwOXADErg8z7KZdofRcTTOvZdF7gU+B3lZobfrtJfA8wCTgXeWeV5J3DW2re2sCdh7M0Bfl+T3uo92HQM66K1tzfweMqAv8niC8Ae1e/3AZ8Bjm+uOj03j/Ihv3vD9ei1+yjfIi+mBK3PBN4N/CQinpuZNzRZuR54CmXswQLgJMqdgF9JudQ3EzhoDOpwHOUb/w6ZeQtARJxLCV6Oy8w9IuJbwJ4RcVCrlyMinkwZEHxg9fc6lBP7pZn5qlbhVY/y9ZSgYa+2484CzsnMozrqc1hHj8FpEXEjcHxEbJaZt65tgw0Sxt76wL016SvbtmsCiIgtgU9R7kZ6dsPV6aUPAJ+lfKvZh/JNZ13q37cTStVF/SHgQxP5sl6d6nJY+yWxb0bERZRxF++nBLQT2QaU2WDvycwTq7SvR8QGwNsi4rjM7FuPXtVb8RLg660AASAzb46IC4BXVXm+CryOclngx1W211IGqJ9X/f0sStDz/ojYuONQP6YMiO70mc6E9gAhIh5OOX/8lNIrvQ1gkDABraB86Haa2bZd41w1Mv7bwJ3AazJzVcNV6pnMvIYyGJOIOIdykllAGU8z0R1J+cb9saYrMhaq6+TfB3Zpui490Pps/FJH+hcp3e7bAd/p4/E3oXyjz5pt11O++W9c1eFuSqDQHiT8pC0w/afq8YuDHKvz8+TezHzIDJWI2Iwynf5fKQFUu40GbUkXDBLG3jLKJYdOrbRJMVVpMqtGWV9M+Sf8l8z8Q8NV6pvMvD8ivgEcGRHr92owVBOqNTwOolz7fWxEtDbNBNaLiC2AuzLzzkYq2D9LmRxBwjLK9f/bO9Jbf3eeJBtRDUS/CNgjIt4FPIky1uztbdla4wEPpsxsG87KzoSq1+J7wKMoM+Oup4yHeDwlqO/JmEODhLG3GDgwIjboGLy4ffV49dhXSSMVETOBi4CnArtkZt23islmfUr35SOY2D1djwXWo3ygnliz/aYq/T1jWakx8CTgjqYr0QOLKIMXH0+ZltvyhOqx3228A1hOWQumU1BO0K3LHV+lzMbYkTILYoAyXqRlSfX418z8/ijr8wzK59D8zHxwoGKv1zRxdsPYO59yffeAVkK1AuN+wMK6LiWND1Xk/hXgeZRLDD9ruEo9FRGb1KRtSOnKXZqZfxz7WvXUTcCra35+Ddxc/d6zUeFjbZDXbwfKCqGXjn2Neq51PX//VkI1U+UAygm6r/+PmTkAfBf496qbv1WHzSjvnUurPACXUGZfvI5yqeHyjv+fX1ACnXdHxKzOY9W9ljVax5rWtt80qsGRvWJPwhjLzCsj4jzgpKr7cwkwn7LM775N1q1XIuLI6tfW2gH7VB9Wf83MTzZUrV74KOXa30XAoyLiDW3b7pkEC9h8JSJWUgY+/YEyknw/yje1vYbacSLIzLuACzvTI+Ig4IFJ8votp7x+f6JMXX1z9fvRDdarJzJzUbXw3Hsj4jGUE+0rgJcCh2bm38agGkcCL6bMGDm1SvtP4IFqW6uu91aX6d5AGXD55vZCMnMgIt5MGdd0TUScSbmc8gTK4MgbKYOGh3I95fzxkYh4PCUo2YMeX3YxSGjGPODY6nE2Zfni3ToX35jAju34+43V4y3ARA4Stq4eX1X9tLuFmhPQBHMO5T35Lsr78q+Ub2f7ZOYPG6yXRuZCygyG/wI2pCyscy5wdC+mwo0Tb6KM2J9f/fwWeGtmfnYsDp6Zv46IHSkzZFrTnluLKV3Xkf0rlBP9A8DXa8q6rFpM6SjKt/+HU8ak/ZSamQw1+98fEa8CPgG8lzJu4QLKZ2zPLltPW716TBerkiRJE4RjEiRJUi2DBEmSVMsgQZIk1TJIkCRJtQwSJElSLYMESZJUyyBBkiTVMkiQREQsiIhJu2hKROwbEasjYuem6yJNJK64KE1CXZ7wn9i3ikwiEXE0sHgSLN8sjZhBgjQ5da77/gLK+vGn8Y973LfcQVnu9q1jUK+mnA18GbhvLcp4P3AmE3/5bWnEDBKkSSgzz2n/OyIeRgkSrujc1ub+vlesIdXd+QaGzShpDQYJkoiIBZT70k/rTAM2ptwB85XADOAyyk11/lDdye5gyiWLmyk3uvlGTfmvA94JPAuYDlwDfDgzz+/It5rybf0c4DjgmZS7230FOCIz7+nIvwXlhmIvAR4J/K7Ke1xmLm/Lty/wBeCFmXl5R9ouwLMpd/N7AuVmXR/MzDPbjnFTVdT8iJjfKrf9+ZImIwcuShrOJcBGlLvVfY4SLFwQEYcAh1BO6u8B1gPOj4g1xjhExHGUrv67gfdVeZcD50XE22uO92xKl/4VwLspl0feBXwjIh78zIqIzYGrgNdS7nZ4MLCIcke8i6vek5E4nnJ55rPAocAqYEFE/Eu1/Q7+cfnmx9Xv+zD8rXylCc+eBEnDuSozHzyZRwSUE/LjgX/OzL9V6f9DuUXtmyknaiLi2ZRb6p6QmYe3lfmJiLgQOCEizsrMu9u2PQN4ddsAwU9HxCmUQOG1lIADysl9E+AVmfmdtrwfpgQX84EzRtC+GcBzM/O+qs7nU25B/A5gYWb+HTgnIs4GfjvE5Rpp0rEnQdJwTu74uzXw8axWgACQmb+iXBr4p7a8ewOrgTMjYuP2H+CbwCOA53WUnzUzCD5UPb4aoOpR+Ffgl20BQssJlN6AV4+seXy6FSBUB/89cENHO6QpySBB0nB+2/H3ndXjTZ0Zq22Pbvt7K2AacD2l2779p/Ut/7EdZVzXWWhmLgP+CjypStoE2AD4dU3evwDL2vIOp7N9AH9mzXZIU5KXGyQNqZoZUGew9Gkdv68GXj5E/oec6MfYSNohTUkGCZL66TfAy4BbM/MhPQSD2KozISLmUGYvtL7130EZCPn0mryzgTnA4u6rK6mdlxsk9dPZ1ePxETG9c2NEdF5qqJJj9460w6rHCwEycxVwEbBNRLysI+97KJ9tF4yyzoO5B3hUj8uUxjV7EiT1TWb+vFrO+GhgcUScB9xG+aa/LbAbZepku2soswk+R+mJeCGwJ/BDyhoILYcDLwYujIhPAzcCOwKvA35EmZrZSz8Ddo2Iw4BbgdWZ+eVh9pEmNHsSJPVVZn6AsrbCbcBBwKco0yRnUKY1dvoFsDvwfMoiTjsCnwReVfUgtMq9BdgeOA94A2UWxnaU2Q0vz8wHetyUtwE/oUzpPBf4Uo/Ll8adaatXT9obv0maYForLmbmvk3XRZI9CZIkaRAGCZIkqZZBgiRJquWYBEmSVMueBEmSVMsgQZIk1TJIkCRJtQwSJElSLYMESZJUyyBBkiTV+v8BnsNLwwK173IAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.figure(figsize=(8,6))\n", "sns.barplot(x='Timepoint',y='Accuracy',data=test_acc_df,ci=95,palette=['C0']*7+['C1'],errwidth=2,capsize=0.5)\n", "plt.xticks(ticks=np.arange(8),labels=list(range(7))+['overall'])\n", "_=plt.title('Temporal and Overall Accuracy')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Chance Accuracy\n", "\n", "To assess significance of the model performance, the observed test accuracy was compared against the accuracy that would be observed if the model was to guess one of the two classes at random. To that end, model with the best hyperparameter settings was trained on the training set a hundred times, each time with randomly shuffled labels. At every iteration, the model was tested on the test set with \"non-shuffled\" (i.e., true) labels. This process was meant to simulate a chance accuracy distribution. The mean of the chance accuracy distribution formed the baseline performance measure against the observed performance of the model when trained on true labels. The observed test accuracy was significantly greater than the average chance accuracy (p < 0.009). See the figure below." ] }, { "cell_type": "code", "execution_count": 41, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "with open('../../results/03-rAI/perm_acc.pkl',\"rb\") as f:\n", " obs_acc, results_perm = pickle.load(f)" ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Accuracy\n", "Observed: 0.61\n", "Chance: 0.50\n", "Observed > Chance (p = 0.0099)\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAa0AAAEwCAYAAAAEri6qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAAA0+ElEQVR4nO3deZwUxfnH8c+yCotREUUUFFRQHsSoIB6BEMULb+MVQ1AUxRsVPAAV8BY8MELEC/EiGDSCGvGIaIgaMfFA1+unDyrgEYioXCKnu/v7o3qWYZhddmdndreH7/v12lfPVld3V8/RT1d1VXdBWVkZIiIicdCgrgsgIiJSVQpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpa9YiZzTGzV+q6HLJhM7PuZlZmZn3qcpt1UY663K5UzUZ1XYB8Z2abAOcAJwK7AZsBC4AZwF+BCe7+c92VsH4ws0LgK6AlcLW731DHRYo9M9sRmJ2UVAb8CPwPeA+YDDyVze+fmQ0AFrn7w9laZy6YWUfgOOBhd59Tp4WRalHQyiEz2xl4DmgHvAyMAL4HmgOHAA8BHYBBdVXGeuQIQsD6AuhjZje6u0a+Z8dLwPjo9aZAG+Bo4PfAu2Z2vLt/lZT/NaAxsDqDbQ0A5gAPV3O5mmwzEx2Ba4BXCOWty7JINSho5YiZNQaeJRwgTnT3J1Oy3GJm+wD71Hrh6qe+hIB1KfA3oDvwz7osUFWY2Wbu/mNdl2M9Zrr7hJS0QVGt6A7gOTPrlKhxuXspsKI2CpZ4/2pzm+tTn8oi61LQyp2zAANuSROwAHD3t4G3U9PNrD1wO7A/UEo4U77Q3f+XlKclcBlwMLAD4cxwFvAIMNLdS5Ly9iHU6g4G9gLOB7YHvgRucvdH0pThQOBy4FfAL4C5hCAy2N2/T8r3e+AiYE+gEPgQuM3dJ63vDUpaxzaEM/8bgOeB+YQgtk7QMrMCwnt7FqG5FUIT2FPufnVSvoaEs/5ehJruauAzQnPQmCjPw8Dp7l6QZjtlwCPu3if6f8doO9cBnxBqxx2Axwk1w/bAxcABQOvovfgEuMfdx6VZ/+bAYOAEYCfgpyj/GHd/zMxGR+tr5+6fpSzbAvgaGO/uZ677jlaNu48ys72BU4CewIRo/d0J7/0ZiWY+M2sQlefMqLxlwDzgdeA8d18dvWcAOyS9BtjJ3eeY2RxCreYS4GbCd2sBsFO6babs80WE71lrQjPyne5+Z0qeOcAcd++ekr7Wus3sWkItC+CfZpbI+oi796moLGb2C2AocDLh97MQmAoMc/cv020PKCD8jnYmNMve5e63pu6fVJ06YuTOSdF0bDWX247QZPEVMBD4C+HANj4l3x5R+jTCD+mKaJmbgbsrWPdwoDdwH+GgWwo8bGa/Ts5kZucC/4i2cQ/hYPEo0JnwY03kuxF4jHCdZFhUhmXAE2bWrxr7fBrhID8+Ott/FDjBzJqkyftnwntaBtxEeI+mseb9TgSsF4FbgG+Bq4EhhOuIJ1SjXOkcR3hP/k44iL8QpXcnnGQ8G5VpGCFQ3m9mVyavwMy2AN4ArgI+InwWNxJOOo6Ost0fTdMFpdMJ79c6wTADiXUctZ58Qwi1sjmEYDsQeAroAjSK8vQmNH9/Gr1O/H2XtJ7WhM/ry2gdawWeClxE+G5NAK4EFgF/MrNrKluoEk+y5neZ+E0kfhdpmdnGhO/UFcC7hMA7kRDA3jSz7dMsdh7huzeRcII5j9DC0ivDcguqaeXSL4El7j6rmsvtDPze3f+aSDCzUuACMzN39yj5VaBNynWfUWb2Z+AsM7vW3eelrLsRsI+7r4rWO4lwoLwQmB6lbQ/8iXDg6erui5KWHxadcWNmexEOZCPc/aqkPH8ys6eBEWY2vopNZ2cCryVdEH+EcFDoRQgQiffhZEKtYAKhhlSaNC/5BGwAIYikli01XyZ2A/Zw909S0v/s7vembOsOwgH6CjMb6e6JayTDo/Wc6+5jU5ZpAODuH5nZv4HTzWxocs2Z8H594u5v1HBfAD6Ipu3Wk+/4aJvHpqRfkXjh7hOiE5lv0zRHJuwEnJ2u9lmJdsCu7v4NgJndRajhDTWzBxLpVeXuH0Tv7TnAS+7+ShUW6wP8mtCKUH4N2sxeJpyojCAEvmSto3IvjvI+SAjWFxFORiUDqmnlzuaEGkh1zU0OWJFp0XSXRIK7L08ELDNraGZbmlkzwtlgA2DvNOu+OxGwonX8F5iZvF7gd0BD4LqUgJVYJhEoTiHUdh4xs2bJf8AzhF6SXda3s2bWFWhPCFSJbbwPFLNuLeOUaHp5csBKKVci30Lg+krKn6nn0gQs3P2nxGszKzKzrYAtCc1HmxP2MRGUehICwDq18JTyjQVaAEcmrXt/wuf1QA33I2FJNN18PfkWA9uZWbcabm8Boam6Oh5NDkzRd/gOwkn3MTUsT1UdT2iZGJGc6O7PEb6rv01zQvRQImBFeZcB/2Ht35tUk2paubOEcOCurnQ1sx+i6VaJBDPbiHCWexqhdpZ6XaZpNda9Q9L/iR/Ue+sp567RNj+tJM8261kHhGtXq4H3ot6WCS8Cg81sD3dP1AZ2Aea5+7frWecuQLG75+Ji+sx0iWa2KXAtobmoVZosic+jWfT671XY1uPAKMJ7NCVK6wusYt3m4kwlgtWSSnOFpsyngX+Z2VxCE/ZzwKTkE6Eq+CKl1lgV65wkAP8XTdtUc12Z2olwQrkwzbyPCb0RmxGuxyZU9HvbKk26VJGCVu58BOxvZm2q2URY2Q86OTD9kdDM8Djh2s58wsF/L8K1nHS16IrWvU5HhCooINS0jqhkvR9XtoLoQH8ysDEVB8kzCc19uZC2S310QlCRZRWk/4VwPWosocv0D4T35UhCU2e1WzXcfbmZTQDOjTqrLCdcu3vG3b+rfOkq2yOxufWU5d9m1hY4DDgw+utFaKLr5u4Lqri9it6/bKhoiERdHeeqG5ylChS0cmcy4cL8WYSz1GzrTbgO1DM5MaW2kolETaIjFdQqIp8BhwNfpWsuq6KTCeOGrorWl+pi4FQzGxSdzc8kNMNss57a1kygvZk1cveVleRbAGBmW6YcdKt19h51rDiacF3rvJR5h6Rk/57QdLlnFVc/FuhH6HyxGNiE7DUNQvh+Qqg1VcrdlxK+15MBzOwC4C5C7e+2KFsuxtbtmiatQzRNPiFcQGiSTZXu86xuOWcBh5vZFmmazTsQaqrfr7OUZJ2uaeXOOMLZ6+Vm9tt0Gcysc/TDz0QJKTWkqEvuJRmuL2ESofnpmqhb9lqiLucQevEBDI/uZpGar6pNgwuIusin/hEOzlsBiffv0Wh6a+r1g6RyJfI1JfSqrKj8sCYopwaWy6pQ9mSJM+rUz6MFa4ICUH7NaiLQwcz6rqd8RE2jbxFqnH0JPUSnVrN8aZlZf8L1vw8INfbK8jZLk/xuNE0OFEtJHzhq4pTk3nlR79BLCO/7s0n5Eicr2yXlbUQI+qmWRtOqlvVpwvHyiuREMzsC6ESo/db0eqlUgWpaOeLuy8zsaMIZ7NNmNpUw3uoHYGtC88phQKZjNiYRmo0eJ9xtYxvCge2HSpdaf7m/sTDo9C7gQzMbT+jxtB0heJxJuF70djTe5Vqg2MyeIIzlakHoGn8koUNHWtG4pq6EcVMV3UboGUKTZ1/gCXd/Itrf04BdzOwZQq2lHeG9/GW03GjCBfqhFgZwTyUMFt2NMHYuEaQmEnryjY3Ks4BQe0x3gK6Qu/8Yfb6nmtlywti7HYBzCWO7Uq9hDAUOAsaZWQ9CT7gCwsFvI9bthTaWNV3Tr8vg4NjOzE6NXm8CtCXUDDsQhgEcV8lnkPCJmf0HeJM1n/M5hBOcx5Ly/Qfoa2Y3EK5FlQJTkjuqZGAmoVv5vYTOTb0Ig/JvcPevk/KNIXRyeTnK25DwXqZrknw7KtsQM2tKGCc3293frKAMDxNqu4MtjNl7jXAt+QLCsIpctKZIGqpp5ZC7f044EF1KGKA7hHAAuozwgzk9SsvEpcBIwgDNO6N1jSXlTDAT7n4P4eA9k9BENyZa/wzCoNZEvusIB7+5hOtOdxEOZI2i5SqTqGWkHXgdrX8hYZDmoWaW6NzQi9BFv4gwBmYkcCjwRNJyq4AehODQihCYhgP7Jm/P3ZcQguvHhIPOtdG+HL6esqdzKvAgIViOIYznGkJ4T9LtVxdCk1pnwkDyawgHwSmp+QlBYQnhO1PdnncQ3p8/EzpvjCT0hPuQ0Dz7qyp2Gb8daEL4XO8hjEF6C+gS9fZMGEIYv9WPMDRhIuEkrSbuJFynPS2aNgUGJA8mB3D36YSu6Q0I7+0FURnWCSgeblt1JmFQ/j1ROc+vqADRcIXDCOMg9yV0kDmV8L3bLyV4Sg4VlJXp9m4i9VnUxDUPeNvdD6vr8ojUJdW0ROq/Uwi1i+reXUUk7+ialkg9ZWbHEK6NXUsYl/R0XZZHpD5Q0BKpv+4kPK5lBnBWBoNyRfKOrmmJiEhs5E1Na8aMGT8TrtGt73Y0IiKyxuZAaefOnWMRD2JRyCpqABQUFhame5xFpUpKQqtLYeE6Y2TzlvZ5w1BSUgJlZZStDDcGKWzcmIIG+d3/aoP9nMlsn6NlY/OlyKegtaSwsLBJx44dq71g4mkftuZhcHlP+7xhcHdKFixk4a1/BKDz2Hso2qZ5HZcqtzbUzxky2+fi4mJKSkpi00IVm+gqIiKioCUiIrGhoCUiIrFRpWta0d2q+wP7EZ6IuylwYLrHVJvZsYTBkB0Iz3h6ALgp9Yac0eMcbiXcB20Two04L3X34oz2RERE8l5Va1oGDAa2JzzGIH2mcJv+pwl3y74oen014dHYyfkaEO5+3pMwgHIQ4S7lr0QPmhMREVlHVYPWDKCZu+/Cmoe9pTOS8ATaw9z9fne/GBgBXGBmuyTlO4nwWIrT3P16d78L6E54MNs11dwHERHZQFQpaLn7j+5e6XOazKwDoUnwvpTbzdwdbefEpLSTCI+A+FvSNr4D/gocZ2YbV634IiKyIcnmOK1O0fSd5ER3n2tm3yTNT+Sd4e6p95B6i/A8pp0JD5CrlpKSkvLxCtWxbNmyRFmrvWxcaZ9rz9Zbb01RUVGtbjOhZcuWLCkpZWH0/6xZsyhctLDSZeJO3+3qSQxMjotsBq0W0XRemnnzCDf+TM47rYJ8RHmrHbRE6qOioiJKCzZm9n8X1/q2d9quCUVFjWp9uyK5ks2g1TiarkwzbwWhh2By3oryJa+rWgoLCzMaEa4R9BuGutznDz//nqvumV7r2x1+/q/ZfuM1t/Zp06aN7oiRh7JwR4xsFylnsjlOa3k0TXdaV5Q0P5G3onyk5BUREQGyG7QSTXst0sxrQeh4kZy3onyk5BUREQGyG7SKo+neyYlm1pIwvqs4JW9nMytIWcd+wFLg8yyWS0RE8kTWgpa7fwx8CpxjZsn3xz8fKAUmJ6VNInS2+G0iwcyaAb8D/ubuq7NVLhERyR9V7ohhZkOjl7tG095m1g1Y5O5jorSBwDPAi2b2OPBL4ELC2K2ZSaubBPwHGG9mI4HvgQsIQfTaDPdFRETyXHV6D96Q8v+Z0fRLYAyAuz9rZicQ7mpxJ/AdcGPqsu5eYmZHEu6ucTGht+BbhDtkqGlQRETSqnLQcvfU608V5XuacM/B9eVbCJwV/YmIiKyXHk0iIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxoaAlIiKxsVG2V2hmuwA3Ar8GmgJfAuOBO9x9ZVK+rsCtwF7AEuBx4Ep3X5btMomISH7IatAys+2At4DFwBhgAfAbYASwG9A7ytcR+AfwMXApsD1wOdAGOCabZRIRkfyR7ZrWqcAWQDd3/zhKG2tmjYGeZnamu68GhgM/AN3dfSmAmc0B7jezg9x9WpbLJSIieSDb17Q2j6bfpqT/D1gNlJjZ5sChwPhEwIqMB5YCJ2e5TCIikieyHbRejaYPmNmeZtbKzE4B+gC3uHspsDuhhvdO8oLuvgooBjpluUwiIpInsto86O5TzWwYcBVwbNKsq939huh1i2g6L80q5gFdMt1+SUkJ7l7t5ZYtC30/Mlk2rrTPtadVq1a1ur1UpSUl5a9nzZpF4aKFdVia3NN3u3pKkr4fcZCLLu+zgVeAc4ATgQeB68zsvGh+42i6ct1FWZE0X0REZC3Z7j3YE7gPaOfuc6PkJ82sATDSzB4HlkfpjdKsoihpfrUVFhZiZtVeLnF2ksmycaV9rm11N5KjQWFh+es2bdpQtE3zOitLbdB3u3qKi4tjVdvKdk3rAmBGUsBKeAb4BbAna5oFW7CuFkDqsiIiIkD2g9Y2QGGa9I2j6UbAR8DPwN7JGcysIdCR0BlDRERkHdkOWjOBvc2sbUr6H4AS4AN3Xwy8DPQ2s02T8vQGNgWeyHKZREQkT2R7cPFtwBHAdDNL3BHj6CjtXnefH+UbArwBvGJm4wh3xLgMeMHdX85ymUREJE9ktabl7q8BXYF3gX7AKKAtcCVwYVK+d4FDCD0I7wDOBu4HfpfN8oiISH7J+g1z3f0t4Mgq5HudcFNdERGRKtGjSUREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDY2ysVKzWwf4FqgK7Ax8AVwh7s/nJTn2ChPB2A+8ABwk7v/nIsyiYhI/GU9aJnZEcDfgFeAYcBqoB3QKiXP08A04CJgd+BqoFn0v4iIyDqyGrTMrAnwMHCPu/evJOtI4D3gMHcviZZdAlxpZn9y98+yWS4REckP2b6m1QvYglBrwsw2M7OC5Axm1oHQJHhfImBF7o7Kc2KWyyQiInki20HrEOBT4Egz+xpYAiwws5vNrDDK0ymavpO8oLvPBb5Jmi8iIrKWbF/T2plw7eph4FZCE+DRwGCgCBgAtIjyzkuz/DygZaYbLykpwd2rvdyyZcsAMlo2rrTPtadVq1brz5RDpSVrGjRmzZpF4aKFdVia3NN3u3pKSkrWn6keyXbQ2hRoClzh7rdEaU+a2abABWZ2I9A4Sl+ZZvkVwCZZLpOIiOSJbAet5dF0Ykr6o8DvgH2T8jRKs3xR0vxqKywsxMyqvVzi7CSTZeNK+1zbltXBNoMGhYXlr9u0aUPRNs3rrCy1Qd/t6ikuLo5VbSvb17QSTX7fpqQn/m+alKcF62oBzM1ymUREJE9kO2jNiKbbpaRvH02/A4qj13snZzCzllG+YkRERNLIdtB6Ipr2TSREXd7PAn4C/uPuHxN6GJ6T1KMQ4HygFJic5TKJiEieyOo1LXefYWbjCYOEmwPvAkcBhwGD3H1JlHUg8Azwopk9DvwSuJAwdmtmNsskIiL5Ixc3zD0buIkQqEYTusGf5+63JTK4+7PACcBWwJ3R6xuBi3NQHhERyRNZv/egu68i3HNw2HryPU24/6CIiEiV6NEkIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGwpaIiISGxvlcuVmNgi4BXjf3TumzOsK3ArsBSwBHgeudPdluSyTiIjEV85qWma2LTAU+CnNvI7AP4Ai4FJgHHAuIXCJiIiklcua1s3AO4TAuEXKvOHAD0B3d18KYGZzgPvN7CB3n5bDcomISEzlpKZlZvsCpxJqUanzNgcOBcYnAlZkPLAUODkXZRIRkfjLek3LzAqAO4FH3L3YzFKz7B5t953kRHdfZWbFQKdMt11SUoK7V3u5ZcuWJcqQ6aZjR/tce1q1alWr20tVWlJS/nrWrFkULlpYh6XJPX23q6ck6fsRB7loHjwN6AAcV8H8FtF0Xpp584AuOSiTiIjkgawGLTPbjHAt62Z3TxeUABpH05Vp5q1Iml9thYWFpKnZrVfi7CSTZeNK+1zb6q5TbIPCwvLXbdq0oWib5nVWltqg73b1FBcXx6q2le1rWkOBVcAfK8mzPJo2SjOvKGm+iIjIWrJW0zKzFsAAYBiwTVLELwIamtmOwGLWNAu2YF0tgLnZKpOIiOSXbNa0tgEaEgYTz0762w/YNXo9GPgI+BnYO3lhM2sIdASKs1gmERHJI9kMWrOB49P8fQzMiV6Pd/fFwMtAbzPbNGn53sCmwBNZLJOIiOSRrDUPRsHo6dR0MxsA/OzuyfOGAG8Ar5jZOGB74DLgBXd/OVtlEhGR/FInN8x193eBQwg9CO8AzgbuB35XF+UREZF4yOkNcwHcvXsF6a8Dv8719kVEJH/o0SQiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbCloiIhIbG2VzZWa2D9AHOBDYAfgBeAMY6u6fp+TtCtwK7AUsAR4HrnT3Zdksk4iI5I9s17QGAycALwP9gbFAd+A9M9s1kcnMOgL/AIqAS4FxwLmEwCUiIpJWVmtawB+BXu6+KpFgZo8DHxICWp8oeTihFtbd3ZdG+eYA95vZQe4+LcvlEhGRPJDVmpa7v5EcsKK0z4CPgV0BzGxz4FBgfCJgRcYDS4GTs1kmERHJHznviGFmBcA2wPdR0u6EGt47yfmiYFcMdMp1mUREJJ6y3TyYzinAdsCQ6P8W0XRemrzzgC6ZbqikpAR3r/Zyy5aFvh+ZLBtX2ufa06pVq1rdXqrSkpLy17NmzaJw0cI6LE3u6btdPSVJ3484yGlNy8zaA3cBrwN/jpIbR9OVaRZZkTRfRERkLTmraZnZtsBzwELgd+5eGs1aHk0bpVmsKGl+tRUWFmJm1V4ucXaSybJxpX2ubXU3kqNBYWH56zZt2lC0TfM6K0tt0He7eoqLi2NV28pJ0DKzJsALQBPg1+7+v6TZiWbBFussGNLm5qJMIiISf1lvHjSzImAK0A442tdtZP0I+BnYO2W5hkBHQmcMERGRdWQ1aJlZIWGAcBdCk+B/UvO4+2LC4OPeZrZp0qzewKbAE9ksk4iI5I9sNw/eDhxLqGltaWanJs1b6u5PR6+HEG7v9IqZjQO2By4DXnD3l7NcJhERyRPZDlodo+kx0V+yL4GnAdz9XTM7BLgFuINw78H7gSuzXB4REckjWQ1a7t69GnlfB36dze2LiEh+06NJREQkNhS0REQkNhS0RCQv9O7dm+uvv76ui5E1H374IWbGN998U9dFqVdq496DIiIZ+/bbbxkzZgyvvvoqCxYsoGnTphxwwAFceOGFbLvttnVdvNh78803mThx4mbz5s1bCXwBDHH3pypbJroRen/gPGAnYAHwiLtfkZTnAMLjqnYj3DTiVne/N2U9LYCbgSOBzYBZwPnu/mpF21ZNS0Tqra+//poTTzyRzz77jFtuuYWpU6dy22238fnnn3PSSSfVeS1k1apV689Uj7333nuMGjWKrl27riL0/n4UeMLM9lvPorcDFxCek7grIei8lphpZjsBzxOGNnUCRgB3mtmJSXm2AKYDBcBR0XouAuZXtmHVtESk3rr++uspKCjgoYceonHjcC/tli1b8tBDD9GjRw+uv/56xo4dW57/559/5v7772fatGkUFhZy0kknMXDgQBo0COfnU6dO5c477+TLL7+kqKiIdu3aMWrUKJo1awbAtGnTGDNmDJ999hlbb701xxxzDP369aNhw4YAHHTQQRx//PHMnTuXl156ia5duzJ//nw6duzIFVeUVzJYunQpXbt2ZeTIkfTo0YNVq1YxevRopkyZwuLFi9l5550ZMGAAv/nNb8qXee211xg+fDj//e9/2X333fnDH/6Q8/f3kUceYbfdduPEE09cOXz48E+Am8zsQGAAkLYAFm5weBGwh7t/kjTrvaTX5wFz3f2i6P9PokB4OTA5ShsEzHP305KWm72+MitoiUi9tGjRIv71r38xYMCA8oCV0LhxY3r16sXo0aNZvHgxTZo0AWDKlCkceOCB3HbbbaxcuZJhw4bRvHlzzjjjDL777jsuvfRSLr30Unr06MGyZct4//33y9f5r3/9i8svv5whQ4awzz77MHfuXK655hpWrVrF4MGDy/M99NBDnH/++UyePJmysjKmT5/Ovffey6BBg8qD44svvkijRo3o3r07AFdeeSVff/01t99+O9tuuy2vvvoq559/PpMmTaJ9+/bMmzePfv36cfLJJ9OrVy/cnZtvvnm979HVV1/NlClTKC0N9yNPbD/Zc889R8uWLdMuX1xczEEHHZSa/CJwYSWb/S2hGe9wM3uO0GL3KjDQ3RO1pC7A1DTrPd3MNnb31cBxwN+jp9sfSGhCHAfc5e5lFW1cQUtE1igpgWefhdGjYeut4fHH66woX375JWVlZbRt2zbt/J133pmysjK+/PJL9thjDwCaN2/OOeecQ0FBAWbGnDlzeOihhzjjjDOYP38+q1ev5rDDDmO77bYDoF27duXru/fee+nbty8nnhhasFq3bs3AgQMZOHAggwYNoqCgAIB9992Xs88+u3y5Jk2aMGLECN588026dAmPA5wyZQqHH344DRs25KuvvuK5555j2rRp5cHj1FNP5Y033uCxxx7j2muvZeLEibRs2ZKhQ4dSUFBA27ZtmTNnDqNHj670Perfvz99+/Zl1qxZQLiLf6rmzSu+q//3339fHvCTfAtUdrGwDbAD0BPoA5QBI4EpZtYleqLHtoTb9aWudyOgGeHG6W0ITYx3EK5rdQTujPKOqWjjCloiAosWwYMPhmD11VchbYcd6rRImdhzzz3LgwtAp06dGD16NEuXLqV9+/Z07dqVo48+mm7dutGlSxcOP/xwttxySwA+/vhjPvjgA8aNG1e+fGlpKStWrOC7774rP/j/8pe/XGubTZs2pVu3bjzzzDN06dKFb7/9ljfffJN+/fqVr7esrIyjjjpqreVWrVrFr371KwC++OKLtGVfn6222oqtttqKFStWALBD7XxmDQiPlurt7jMBzKw34MA+wJvVWM877p64E9J7ZrYL0A8FLRFJ69NP4U9/goceghUrIOmgybpn4LWqdevWFBQU8Pnnn3PooYeuM//zzz+noKCA1q1bV2l9hYWFPPjggxQXFzN9+nQmTZrEH//4RyZMmED79u0pLS3lwgsv5PDDD19n2URgA9ZpqgQ49thjGTZsGNdeey3PP/88LVq0YO+9w4MsysrKKCgoYNKkSWy00dqH3KKioiqVvSI1bR5s1qwZixcvTk3eBvhfmuwJ84CfEwEr8hlQArQmBK3/RetJXe/PwPdJ6/m/lDyfEHolVkhBS2RDU1oKL7wQalUvvRQCVVl0CaEs6VJC0oG6LiRqMH/5y1/o06fPWsFi+fLlPProo+y///5sscUW5envv/9+eZCAcM2mefPmbLppeKBEQUEBnTp1olOnTvTr14+jjjqK559/nvbt29OhQwdmzZqVUW3l4IMPZtiwYfzzn/9kypQpHH300eVl2HXXXSkrK+O7774rr1mlatu2LS+++OI6ZV+fmjYPduzYkQ8//DC1FngooddfRaYDG5lZW3f/IkprAxQS7jEL8G/g+JTlDiXUrFYnrSf1qZXtktaRloKWyAaicPVqCsfdDw88ALNnQ+KsvCzNNe+CAnj9dWjVKtS4mjYN0yZNYPPN156mS0tMN964RmW++uqr6dmzJ2eccQb9+/dnxx135KuvvuKOO+4AYNiwYWvlnz9/PuPGjeOII45g9uzZPPDAA5x//vlACAJvvPEG3bp1o1mzZvzf//0f8+bNK79m1q9fP8477zxatmzJEUccQWFhIZ999hkffPABgwYNqrScjRo1okePHtxzzz18+umn3HrrreXzdtppJ4455hiuvPJKBg8ezG677caiRYt46623aNWqFT169KBnz548+OCD3HTTTfTq1YuZM2fy2GOPrff9qWnz4GmnncYpp5zCU0891ahXr17tCYHmQKBbIo+ZjQD2dfeDo6SXgXeBB81sQJQ2ilDDeif6/17gQjMbBdxHuM9sH9bukXgH8IaZDSE80qoTcDFwVWVlVtAS2QBs95nTauanFL4wZU0TYNSklFZZGfz8M3zzTfiDEOSSl00X7FI1agSbbRaC2BZbhOBXUYDbfHPo3h22WdOq1Lp1ayZPnsxdd93FoEGD1hpcPGrUqHUGFx9zzDH8+OOPDBw4sLzLe58+fQDYbLPNePfdd5kwYQJLliyhRYsWXHDBBfz2t78F4De/+Q333Xcfd999Nw8++CCFhYXsuOOOnHDCCVV4h0MT4ZNPPkmHDh3Yeeed15o3YsQI7r33Xm677Ta+/fZbmjRpwu67785++4XhUC1btmTMmDGMGDGCxx9/nN12243LLruMgQMHVmnbmdprr73o378/EydObAh8QBhc/Ht3T74u1QIo7w3j7qVmdjTwJ8LYrOXAS8ClUScM3H22mR1JCEznE3oGXuzuk5PW87aZHQcMB4YBX0XTuysrc0FZVb54MTBjxoxFhYWFTTp27FjtZRMPVw7DDzYM2ufa9eHn33PVPdNrfbvDz/8122/8EyW/6kKz/82jrKCAgrr+zSeCX1nZuoHztNPgkUdqtHp9t6unuLiYkpKSxZ07d94iy8XKCd0RQ2QD4Pv8ipl77R26sde10tLQtT41YBUWhj+RSihoiWwICgr4bvvWrPz3f+Dqq6Fhw7V7CqZq0GBNEEnTIy0nysrqvMei1H+6piWyIfnFL+C666BvXxg8GB57LASl1FpPaSnsv3/oiLFkCSxeDAsXhvFcP/4Y/kpK1r+96lwHKy0N17VEKqGgJbIhat0aJk6Eiy4Kf+++u3bXd4DzzoOK7n9XVgbLl68JaFWdJoLf4sUh8P3009rrbdUqd/sseUFBS2RD1rUrvP02TJgAAwfC/KQbbFdW6ykogE02CX81eTxIaWkIXkuWhCCY0utOJJWuaYls6Bo0CL32vvgChgwJ17sgdE+vjW03aRJqWO3a1d71M4ktfUNEJNh0U7jxRpg5E+6+G/Zb3yOVRGqfmgdFZG077ADRXSRE6hvVtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDbqrMu7mTUCrgd6A02B94Eh7v6PuiqTiIjUb3VZ03oYuASYAPQHSoEXzKxLHZZJRETqsTqpaZnZvkBP4BJ3HxWljQc+Am4B9q+LcomISP1WVzWtk4DVwLhEgruvAB4AuplZizoql4iI1GMFZXXw6G0zewnYxt33SEk/GHgZONLdX6jOOmfMmFEKVPJUu8o10I06JcdKS2v/t9agQXjcSMny5QAUNm5c+cMfJbZKU5+JVj1lnTt3jsVBsK46YrQA/psmfV40bZnBOksJNcclmRSohh+4SL2UCJQFRUXh/7Kyyh/EKBuizQnHz1ioq6DVGFiZJn1F0vxq6dy5s27+KyKS5+qqOrgcaJQmvShpvoiIyFrqKmjNIzQRpkqkza3FsoiISEzUVdAqBtqb2aYp6Ymnzr1fu8UREZE4qKugNQnYGDgrkRDdIeMMYLq7q6YlIiLrqJMu7wBm9lfgOOAO4AvgdGAf4EB3n14nhRIRkXqtLnvcnQbcEE2bAh8QxmcpYImISFp1VtMSERGprliMgBYREQEFLRERiREFLRERiQ0FLRERiQ0FLRERiY28vslsNGD5eqA3oVv9+8AQd/9HFZbdjjCGrAchuE8jPLRydu5KXHOZ7rOZnQD8HtgX2Ab4CpgC3Ojui3Na6Bqqyeecsp7ngSOA0e4+INvlzKaa7rOZ9QIGALsRbl79ITDQ3d/KSYGzoIa/50OAocDuhN/zp8Ad7v7X3JW4ZqLnCvYn3Clob2BTwjjWV6q4/K6EY1g3YBXh93yZu3+fkwLXknyvaT0MXAJMIHz4pcALZtalsoWi20v9E/gNcBNwDbAX8IqZNc1lgbPgYTLYZ2AssCvwZ+Bi4MVoOt3MiipbsB54mMz2uZyZHUW8npj9MBnus5ndCDxCeFJ4f+A6wgD/bXNV2Cx5mMx+z0cDUwkn6dcAw4AS4HEz65vLAteQAYOB7QnjWKu+oNn2wGtAW+AqYCRwDDDVzDbOcjlrVd7WtMxsX6AnoXY0KkobT/ih3kLlB6gLgJ2Bzu7+XrTsC9GylwBX567kmavhPp+UegZnZjMIB7eehANGvVPDfU6soyHhjPRWwgG8XqvJPptZV8JB7ER3fyr3pc2OGn7O/Qg36T7Y3VdGy94PzCLc3OCB3JW8RmYAzdz9BzM7DqjO53UV4RFPHd39vwBm9hbwEqGm+mCWy1pr8rmmdRKwGhiXSHD3FYQvaLeo6l3Zsv9JBKxo2U+BfwAn56a4WZHxPlfQ5JD4keyaxTJmW00+54T+hB/4yJyUMPtqss/9gbfd/Skza5DmptX1VU32eXNgYSJgRcuuBBZSjx+D5O4/uvsPGS5+IvBMImBF63sZmEn9PoatVz4HrU7Ap+6+NCX9LaAA6JhuITNrAOwBvJNm9ltAOzPbJIvlzKaM9rkSieai+twGXqN9NrNtCc1FV7n7spyUMPtqss8HA2+b2XBgMfCjmc0xs1NyUtLsqck+vwrsZmY3mFnb6O8GoB1we05KW4ei6/HNqfgY1ql2S5Rd+Ry0WhCaBFIl0lpWsNyWhAdUVrRsAemfBVYfZLrPFRlMaPt/siaFyrGa7vMIwAnXSeIio32OrsduRWhm60v4fP8AfA1MMLPjs1/UrKnJ53wT8FdgCPB59DcAONbdX8piGeuLxPGpoveruZkV1mJ5siqfg1ZjQq+oVCuS5le0HBkuW9cy3ed1RL3L+gK3uvsXWShbrmS8z9F1ktMI10nidBPOTPc50RS4FeGAfbe7PwYcAnxDPb1WG6nJd3sloVnsCUKQPhV4F/irme2TzULWE3E+hq1XPget5YQaU6qipPkVLUeGy9a1TPd5LWb2G8K1gucITWf1WUb7bGYFwGhgsru/nqOy5UpNv9uz3f3NRGJ0fWcSsGc9vsZVk+/2ncCRwB/c/TF3f5QQqP8HjMpmIeuJOB/D1iufg9Y80jfjJdIqetDkAsIZSkXLlpG+2l0fZLrP5cxsT+AZQhfb37t7SfaKlxOZ7vPxhDFp95jZjom/aN7m0f/19Wy0pt/tb9PM+5bQ9N2kxqXLjYz2OeoZehbwrLuXJtLdfTXwArCvmeVbL+rE8ami92t+DH7XFcrnoFUMtE9z5rhfNH0/3ULRF/tDwmC+VPsBn9XjC/bFZLDPCWbWFvg7MB84yt1/ynoJs6+YzPa5NWsGjc9O+oPwBO3ZwAFZLWn2FJP5d7sY2C7N7O0J1y8XZKeIWVdMZp/zVoShPemu4WwczSvIRgHri6jH4HekP4btS3gvYyufg9YkwpfyrERCNKL+DGC6u8+N0lqbWfs0y/7KzDolLWvAQYR28foq432OetFNJQzYPCxGo+Yz3ecphNpW6h/As9Hrd3Ne+szU5Lv9BNDKzA5NWnZzQjfoN9y9vjYbZbrP84FFwAnJg2qj4HcM8FFU64qtRI/IlOTJwLFRT8JEvoMJPSbr8zFsvfKtWlzO3d80syeAW6MxHF8ApwM7AH2Sso4nnFEnn23dDZwNPG9mtwM/A5cSqt135L70manhPv8daEMYYNvNzLolzfvC3f+dy7JnKtN9jjqXrNPBJJyb8IW7P53TgtdADT/newgH/slmdgdhrFJfYAvgypwXPkM1+JxLzGwkcCPwbzObQKh19SXULi+vtZ3IgJkNjV4mxkr2jn6bi9x9TJSWuI3VjkmLDgd+B/zTzO4kdMIZSKiRjs9poXMsb4NW5DTghmjalHCd5kh3n17ZQu7+o5l1JwSoYYQa6T+BATUY7FdbMtpnYM9oOijNvEeAehm0Ipnuc5xl+t1eZmYHArcBFxF6kc0ADonB+5XpPt9kZrMJA6uvIXRQ+AA4IQZ3Bbkh5f8zo+mXwBgq4O5fm9kBwB+Bmwn3HnwWuNTdV+WioLWloKwsTj19RURkQ5bP17RERCTPKGiJiEhsKGiJiEhsKGiJiEhsKGiJiEhsKGiJiEhsKGiJiEhsKGiJiEhs5PsdMWQDFD3scC7hMQynufuf67hIIpIlqmlJPjqFcKue2ay57Y2I5AEFLclHfQn3ihwFHGBmbeq2OJUzs4J6/PBFkXpFzYOSV8xsL6Aj4Q7gzwMjCbWtoSn5GgIDgF6ExzWsBj4DHk66e3bisR2DgROAnYCfgE+AMdGj6jGzV4Ad3X3HlG3sSKjtXefu10Zp3QkB9QzgF0A/oC0wArjWzPYFLgC6suYZVx8AI9Pd3DV6pMxVwNGE52QtJtzJ+1Z3f8nM/gYcCmzr7ktSlt0HeAu4xt2vr/BNFalHVNOSfNMXWApMjp4J9ixwupmVf9ejgPUicAvhib1XA0MIdzs/ISnfFsAbhKDwEeEO+DcCswhBoiYGAFcAjxHutv5mlH480B74K+Gu5DcBWwJPmlmv5BVEQXEGIci9AlxCuHv7EsLj5AHuJ9zJ/Q9pytCX8Py0B2u4LyK1RjUtyRtmVkSoOU1OeuryI4RAcBjh8eoQAkZ3YIS7X5WyjuQTueHAbsC57j62knyZaA20d/f5Kek3uvtaz7Uysz8B7xFqi39JmnU30BI43N1frKB8LwBfEwLUfUnzNyEEshfd/Zsa7otIrVFNS/LJCYSHGT6SlPY84dHjyR0yTiE8/HCdJrHokfSJg35P4JPUgJWcrwbGpwlYJAVbzGwTM9sK2ASYBuwaNVdiZlsChwN/Tw1YyeVz9xJCTWofM9s9KctJwObAAzXcD5FapZqW5JO+hAD1jZntnJQ+FfidmTWLmgx3AYrdfUUl62pGeNDg33NU1pnpEs2sOaEJ8rdA8zRZtiA0/+1MeDrve1XY1gOEWlpfQi2T6PV84JlqlFmkziloSV4ws52AAwkH8rQBATiV0KMw2yp6kmplv69lqQlmVkAIsLsCo4F3CB0rSggdN3qRQetI9BTbvwOnmtkgwiPq9yd07lhd3fWJ1CUFLckXZxAC1tnAojTzbyQ0EY4iBLX2ZtbI3VdWsL7vCU2Ie1Zh2wuAzmnSq9vVfo9oe9e7+zXJM8zsrJS8nxOCZccqrnsscBRwHNApSlPToMSOrmlJ7EXXn/oAH7r7OHeflPoHTAR2j7p5P0po+huaZl0FUH5NaCLQwcz6VpQvMhPYLOqunlymS6q5KyXRNHndmNkvCZ1Jyrn7AkIniyPM7BBSpJQP4DnCXULOJQwHmO7un1azfCJ1TjUtyQc9gFZUXnOYDFxLuJZzMXAMMDQKYlOBFYSegsaa7uJDgYOAcWbWA3idEFA6EX47vaN8Y4HLgKfMbDSwitDRobq/r0+Aj4FBUe8+J4whOxf4kHVrcxcSuuS/YGaPELq/Nwb2A+YQxpcBoUOGmT3ImkB9FSIxpJqW5INETejJijK4+0eEGlFPoJAQ6IYSgt3w6G/f5HW4+0KgC2HsU2fgduAaQieIKUn5ZhOa3b4DbiCM55pOqNFUWdTT76ho3acTrmsdEL1+Nk3+2cDehGDdI8o/mFCLnJpmE+MI47J+BJ6oTtlE6ouCsrKKriGLSD4xsxaEMVsPuPu5dV0ekUyopiWy4TifUMtcZ9yZSFzompZInjOznoQ7cAwk3AFjRh0XSSRjCloi+W8ioaPJv1hz/U8klnRNS0REYkPXtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDYUtEREJDb+H9erexZxi6KzAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.hist(results_perm['val'],bins=int(np.sqrt(len(results_perm['val']))))\n", "plt.axvline(obs_acc['obs_test_acc'],c='r',label=None)\n", "plt.xlabel('Accuracy')\n", "plt.title('Chance Accuracy Distribution')\n", "_=plt.annotate('Observed = %.3f' %(obs_acc['obs_test_acc']),\n", " xy=(obs_acc['obs_test_acc'],9.75),\n", " xytext=(0.75,10),\n", " arrowprops={'color':'red'},\n", " fontsize=14)\n", "p_val = (np.sum(np.array(results_perm['val']) > obs_acc['obs_test_acc'])+1)/(len(results_perm['val'])+1)\n", "print('Accuracy')\n", "print('Observed: %.2f'%obs_acc['obs_test_acc'])\n", "print('Chance: %.2f'%np.mean(results_perm['val']))\n", "print('Observed > Chance (p = %.4f)' %(p_val))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Temporal Trajectories\n", "\n", "GRU outputs hidden states that are typically high dimensional. Hidden states ($h_{t}$) capture spatio-temporal variance that is most useful in maintaning class separability. To visualize dynamics, $h_{t}$ was linearly projected onto a lower (3D) dimensional space, $\\hat{h_{t}}$. This was done by replacing the output layer with a _Dimensionality Reduction Dense Layer (DRDL)_ with three linear units. In essence, this is a supervised non-linear dimensional reduction step. \n", "\n", "\n", "\n", "\"Dimensionality\n", "\n", "\n", "\n", "The 3-dimensional representations of $h_{t}$ ($\\hat{h_{t}}$) for both stimulus class are plotted along the three axes of the coordinate system below. The plot represents the temporal trajectories of the two classes. At the first timepoint the two classes are closest to each other. Distance between them increases with every timepoint. Next plot shows the Euclidean distance between the two classes as a function of time." ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "WARNING:tensorflow:Layer gru will not use cuDNN kernel since it doesn't meet the cuDNN kernel criteria. It will use generic GPU kernel as fallback when running on GPU\n", "WARNING:tensorflow:Layer gru_1 will not use cuDNN kernel since it doesn't meet the cuDNN kernel criteria. It will use generic GPU kernel as fallback when running on GPU\n", "WARNING:tensorflow:Layer gru_2 will not use cuDNN kernel since it doesn't meet the cuDNN kernel criteria. It will use generic GPU kernel as fallback when running on GPU\n", "Model: \"sequential\"\n", "_________________________________________________________________\n", "Layer (type) Output Shape Param # \n", "=================================================================\n", "gru (GRU) (None, None, 16) 36624 \n", "_________________________________________________________________\n", "gru_1 (GRU) (None, None, 16) 1632 \n", "_________________________________________________________________\n", "gru_2 (GRU) (None, None, 16) 1632 \n", "_________________________________________________________________\n", "time_distributed (TimeDistri (None, None, 3) 51 \n", "=================================================================\n", "Total params: 39,939\n", "Trainable params: 0\n", "Non-trainable params: 39,939\n", "_________________________________________________________________\n" ] } ], "source": [ "# Make a copy the model\n", "# (tips: https://stackoverflow.com/questions/57316557/tf-keras-layers-pop-doesnt-work-but-tf-keras-layers-pop-does)\n", "#tf.random.set_seed(50)\n", "tf.random.set_seed(47)\n", "BestModel = tf.keras.models.clone_model(model)\n", "BestModel.set_weights(model.get_weights())\n", "\n", "# Replace the the last Time-Distributed layer with Fully connected layer with only two units\n", "BestModel = tf.keras.Sequential(BestModel.layers[:-1])\n", "\n", "# add a new time-distributes dense layer with 2 units and 'linear' activation function\n", "BestModel.add(tf.keras.layers.TimeDistributed(tf.keras.layers.Dense(3,activation='linear')))\n", "\n", "# Set trainable = False for the layers from BestModel\n", "for layers in BestModel.layers:\n", " layers.trainable = False\n", "\n", "BestModel.summary()" ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "trajectory = {}\n", "for subj_idx in dataset.test_idx:\n", " subj = dataset.sid()[subj_idx]\n", " X_test, y_test = query_dataset(dataset_df,[subj_idx])\n", " y_pred = BestModel.predict(X_test,)\n", " appr = y_pred[y_test==1.,:,:].mean(axis=0)\n", " retr = y_pred[y_test==0.,:,:].mean(axis=0)\n", " trajectory[subj] = {'Approach':{'x1':list(appr[:,0]),'x2':list(appr[:,1]),'x3':list(appr[:,2])},\n", " 'Retreat':{'x1':list(retr[:,0]),'x2':list(retr[:,1]),'x3':list(retr[:,2])}}" ] }, { "cell_type": "code", "execution_count": 50, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "trajectory_df = pd.DataFrame.from_dict({(i,j,k): trajectory[i][j][k] \n", " for i in trajectory.keys() \n", " for j in trajectory[i].keys() \n", " for k in trajectory[i][j].keys()}).T\n", "trajectory_df = trajectory_df.stack().unstack(2).stack()\n", "trajectory_df = trajectory_df.to_frame(name='trajectory')\n", "trajectory_df.reset_index(inplace=True)\n", "trajectory_df.rename(columns={'level_0':'Subj','level_1':'Direction','level_2':'TP','level_3':'axis'},inplace=True)\n", "trajectory_df = trajectory_df.groupby(['Direction','TP','axis'])['trajectory'].mean().unstack(-1).reset_index()" ] }, { "cell_type": "code", "execution_count": 51, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "approach_x1 = trajectory_df[trajectory_df['Direction']=='Approach']['x1']\n", "approach_x2 = trajectory_df[trajectory_df['Direction']=='Approach']['x2']\n", "approach_x3 = trajectory_df[trajectory_df['Direction']=='Approach']['x3']\n", "\n", "retreat_x1 = trajectory_df[trajectory_df['Direction']=='Retreat']['x1']\n", "retreat_x2 = trajectory_df[trajectory_df['Direction']=='Retreat']['x2']\n", "retreat_x3 = trajectory_df[trajectory_df['Direction']=='Retreat']['x3']" ] }, { "cell_type": "code", "execution_count": 52, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "text/html": [ " \n", " " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "\n", "\n", "\n", "
\n", " \n", " \n", " \n", "
\n", " \n", "
\n", "\n", "" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Configure Plotly to be rendered inline in the notebook.\n", "plotly.offline.init_notebook_mode()\n", "\n", "# Configure trace for approach.\n", "appr = go.Scatter3d(\n", " x=approach_x1, # <-- Put your data instead\n", " y=approach_x2, # <-- Put your data instead\n", " z=approach_x3, # <-- Put your data instead\n", " mode='lines+markers',\n", " marker={\n", " 'size': 8,\n", " 'opacity': 0.8,\n", " 'color':'red'\n", " },\n", " name='Approach'\n", ")\n", "\n", "retr = go.Scatter3d(\n", " x=retreat_x1, # <-- Put your data instead\n", " y=retreat_x2, # <-- Put your data instead\n", " z=retreat_x3, # <-- Put your data instead\n", " mode='lines+markers',\n", " marker={\n", " 'size': 8,\n", " 'opacity': 0.8,\n", " 'color':'green'\n", " },\n", " name='Retreat'\n", ")\n", "\n", "# Configure the layout.\n", "layout = go.Layout(\n", " margin={'l': 0, 'r': 0, 'b': 0, 't': 0}\n", ")\n", "\n", "data = [appr,retr]\n", "\n", "plot_figure = go.Figure(data=data, layout=layout)\n", "\n", "# Render the plot.\n", "#plotly.offline.iplot(plot_figure)\n", "# (tip: https://stackoverflow.com/questions/38364435/python-matplotlib-make-3d-plot-interactive-in-jupyter-notebook)\n", "plotly.offline.plot(plot_figure, filename = 'figures/trajectories.html', config = None)\n", "display(HTML('figures/trajectories.html'))" ] }, { "cell_type": "code", "execution_count": 53, "metadata": { "tags": [ "remove-cell" ] }, "outputs": [], "source": [ "# Calculate Euclidean distance between approach and retreat trajectories.\n", "approach_dim3 = np.stack([approach_x1,approach_x2,approach_x3],axis=1)\n", "retreat_dim3 = np.stack([retreat_x1,retreat_x2,retreat_x3],axis=1)\n", "traj_dim3 = np.stack([approach_dim3,retreat_dim3])" ] }, { "cell_type": "code", "execution_count": 54, "metadata": { "tags": [ "remove-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAaQAAAFFCAYAAACjVJkSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAAsTAAALEwEAmpwYAABKoklEQVR4nO3dd3wUZf7A8c8mkFAVEKSK9C9FBCygooLYK6AoKhYsd/ZTr3qn99M7r+k1PXs7FeWUJiincgoIKIIFCU340hEFRHqoIbvz++OZDcuy2ewmm+wm+b5fr7w2mZmd+c7OZr7zPPPM8wQ8z8MYY4xJt6x0B2CMMcaAJSRjjDEZwhKSMcaYjGAJyRhjTEawhGSMMSYjWEIyxhiTESwhmXInItNEZHXUtFdEJKFnDkSkjYh4IvJQecRXkURkuL8v/eNNM06s746pumqkOwBTvvyT3EdxFgmqqn0PKik/Seep6oQ0h1KpiEgD4B5gmqpOS2swpoidiKqPN4D3YkwPVXQgvh8Bt6Zp25nmNeBNoKAU730QeBWYkMqAqoEGuM8OYFr6wjCRLCFVH1+p6uvpDiJMVfcD+9MdRyZQ1SAQTHccxqSbJSRTJKJ67wZVfSVq3ivA9aoaiJreAbgfOBs4EtgEfAH8XlXnxNlWces7FXgEOA7YAYwBni1mHQFcKetmoAuutBfe9kdRy94ODAK6AU2AzcAU4AFVXR21rIcrdTwH/AU4AdgLjAfuUdWdxe1X1Hp+BPwMaAusBZ4EtsdYbjjwMnBGuPpIRGoB9wFXAUfhSk9rgUmq+gsRaQOs8ldxvYhcH15f+DMVkaHAMKAn0BTIBz4B/k9V50fFsBpYjfs8/w6cjvs8PwTuVNUNUcsfBvwKuNTfv13AYuBJVX0zYrnmwP8BFwLNcN+P/+I+943xP8GDttcO+CfQHwjgjt3PVHVl1HIlfieiqrEfFJFwSWmNqrYRkVXAN6raL2K9vwb+BLyjqgMjpj8C/BJopqrf+9Nyccd9GNAe9935GPe5z002Xn+5Nrjj/TvgS1zprjuwFXgd+LWqFib2aWYua9RQfdQRkcYxfg4r7QpF5ARgDjAUd7K+C3gCyAVOKcX6+gCTgU64pPRnXDIYUcxbXsOd5JfjTgoPAocDH4rIJVHL/hx3MvwXcAcwGhgMfCoiR8RYd0/cifML4KfAB8BNwD8S3Jd7gOdxJ6Pf4BLcz3GfUSKe8vdnNnAvLulPAQb4838ArvV//9j//dqIaQB34k5wz+P2+QXgNGCmiHSMsc2WuOqrb4BfAP/BJZyDPn///sun/n4txH32fwBWAhdFLNcad/Ic4q/rDtwxu9KP4fAEP4u6flwFwK+Bl4AL/HU0i1o2ke/EYtxnCu57G/7c7vGnTQVOEpHaEes9E/dZ9hOR7IjpA4CvI5JRTWCSv91Z/nb+AnT14z2hFPFGugD4N/C+v+55uO/VL2MsW+lYCan6+J3/E+1dIk4iifKv7F7BJZ/eUVfcfxaR0lzs/BN3kdRXVZf623kad1Ufvf3BuCvQW1T1+Yjpj+NO4o+LyERVDbfk666qu6LW8Q4uAd4EPBq1iWOBk1X1M//v5/zkfYOI/DReKck/Yf8Rd+I7RVV3+9NfBpaU/DEALlm+r6rXx5rp78vrIvIasLKY6tjzYuzzCCAPdzK7PWr5DsBQVR0dsXwIuF1ERFXVn/wnXEnzoM/eXz7yuD8B1AR6qeq3EcuM4UCifSjW/kVpDDyuqvdErGMG8Jb//lv9aYl+J74XkQm479v8GJ/dVOBG4FRcYghfYP0HuAY4HvjcT6i9gGci3nsnrhR3nqr+LyKGp3HJ+2/+/NJ8h8F97t3CpXoReRZYgLvQ+VP8jzHzWQmp+ngeV60W/XN/KdfXE/fP8XJ09Q+AqibVWEJEjgROBt4OJyN/PQW4E0e0a3BVUBMiS3y4m9UTgTZAx4j17PK3kyUih/vLzsNVofWJsf5ZEckobCruIq5NCbtzDlAHeCqcjPwYvgVGlvDesO1ANxE5JsHlDxGxzwEROczf5x8AJfY+r4tMRr6p/mtHf11ZuBLO4uhk5G8z5C93OO5C5x1gb9QxWo0rEZyTxO78JWo74/39GBQxOanvRBzhfQ6XRk8GauMuWrbjSksA/YDsiOXDMSwB5kTFkIOr/jw1ouRVmngnRFYx+8nqI6CZiNRLYN8ympWQqo9lqjo5hesL/6PMjbtU4tr5r7FKEF/HmNYFqA98H2edTYFwSWsA7l5GH6BW1HINY7x3ZYxpm/3XWFV8kZLdl1juwVXnLBCRlbiTzkRgYqLJXkR6AQ/jrsjrRs1edcgbEtvnxrjPa1JJm8dd8N7k/8QSa3uxbIu+h+VbDAwSkbp+8k3qO1EcVV0vIks4kJAGABtUdYGITPf//rP/GuLgVnpdcMnrhzibaIy7H1iaeEs6Rgnd38xUlpBMpHgPqmbadyWA+6e/Os4yCwFE5ETcPaDluIYCq4A9uP19k9g1BfFavQXizEsJVX3bv5F9Ae5K/Czcif1jETnLLzkWy79/MwPXMORhXGliF26fHwNiXU2ncp/Dy7+Ou38Wy54k15nINhP6TiRgKnCLX9IbwIFGEFNxVdK5/vQ8Vd0aFcMC3H3H4vwQsWyy8ab1e1neMu0kY9Jri//aKMa8dlF/h6/aeqZo2+Er9s4x5nWNMW0ZrvHD7ARavV2Nq1o5X1WLSgYiUpfYpaOyCl/FdsY1RIgUa19iUtUtuBP66/49u7/gbl4PxLU+jGcwLulcEqPF4RHAvkTjiLIJ17KrRwnLLcclv5wUlMwbiEizGKWkLsDGiPtkyXwnSuolZCruHtuFQG9cK0hwx7M2cAlwDK5FYqRluFacUxMoySYTb7Vg95BMpFVAIe5qvIiInAKcFLXsPGARcKOIdItekX8CTZjfSmk2MFBEOkWsJ4cDLaIijcB9f/8ca30i0jTiz/BVZXRMv6F8/gc+xF393yEidSJiakX8q+Hwctl+w4gi/r2CcPVo5AXDTmJfQMTcZ78penTLtIT5J9k3gK4ickhVXPi4q+pm3IPYl4pI9HcnfF+rSRKbvi/q/YNx1YITIiYn850IJ4BYnx24EpEHPIBrmDEVQFUXAhtxjSkCHHz/KBxDM4opIUXFkEy81YKVkKqP40TkmmLmTVDVnaq6U9zzQTeLyBu4uvGOwA3AfCKuilXVE5EbcFeMn4vIS7jqhQa4KqZJuFZWyfipv82ZIvIUsA13A/2Q76mqjvVbrd0pIsfhmmhvAlrhbkJ34ECpbjwuqb0nIs/jmg+fjWtJtynJGEukqltF5Le4FlWf+i3b6uBagy3DtcyKpz6w3m8FOBd3AmwL3IYrnUyMWHY2cJaI/ArXXNvznwN6H9gNvCYiT/rv64urAlxB2f73H8BVV70oIufgWkEG/P2qwYGm57f582b4n8Fc3Am4Ha6UN4LEWtltwiW2Fhz4Tt6Ou/dS9P5kvhOqullElgNXisgKf127VHWiP3+LiMzD1QCsjixZ45LVUNyD3R9Hxfo47rv1V/++5VRctWlrXGOIvcAZycZbXVgJqfq4CneTPNZP5BXzvbjnPM7BtW7rA1yMayp8EFX9AjgRd8K/Avc8xT24f9SZyQaoqrNw/8zLcFfEv8Y953RdMcvf6M8L+cs+AVyPu/r9dcRyM4HLcPdQHsadxPbgEudBzaJTRVX/jktAtXFXwMNxCSqRJL0bd5+nLe55oGdwJ/l3gD6qui5i2dtxJ/37cc2S3/C3vwI4H1fq/Q2uuq8Rbp+/pQz8eyYnA3/FNYH+O+75mQ5EJEtVXevPfxz3oO3fcZ//Wf5y0S36irML1zAj19+Pm3EXPKeq6vqo2BL6TviG4b5rf8J9btHHZmrUa1i4GvaL6Ko2vweSC4G7cVV3v8P9Hw3FVeX+OWr5ZOKt8gKel1CHy8YYY0y5shKSMcaYjGAJyRhjTEawhGSMMSYjWEIyxhiTESwhGWOMyQiWkIwxxmQES0imyhCR1SIyLd1xmMwiIv1FxBM3EGKlJyKviBtEssqxnhoqERFpCKzD9VZ9naq+luaQqiwRGYh7oLQrrmeHRcCLqlrcYIHFrWc1cHTEpP3Aetw4TL9T1W9KGV8D3EPI08KjzKabf8JvoKqPJfGeh3AdlE4on6gqjt8Z7nBczyd5aQ2mkrISUuUyDPe0+ircAGKmHIjIebjeJw4Dfgv8HnchMKyUq/yWA6OS/gTXs8INwGyJPVptIhrgekfoX8r3l4fhHBh1NVEPcvCYRuVhBq7HjPK+gGuD25+e5bydH+H2p8qxElLlchOuH623gcdEpJ2qJjqmTLkRkfqqmp/uOFIo3FXRmRHd9DzuDzlQGtujRiV9VkS+x3XTNJxDe4wuF1XhOJVmH/wOYfeWU0gVwu+0tq7f5+R+XEm7yrGEVEn4nS/2xPVz9R6uX7QbcR1dRi/r4cageR34A64T0R3AKOD+yP63/CqTB3Fd6d+C65PucFxnqr9R1SnFrPs1XD9dPYEvOTAs8yBc/2s9cb0lzwMeVdW3o9ZzDi7Bngg0xw2H8DnwR1WdHmOfOuD6azsbOBLXCeUXwO9VdU7Usp1xJ/nTcX2EfQjcWcwgb7F4/s9BYw6pammHbIhlCi4hHTQiqH/iuRXXX1sXXPzh/fzIX6Y/B8bneVBEHvR/X6Oqbfyqo1W447MYN2RFV9zxH+6v4yx/em9cFfBS4GlVfTYqnoSOU2TVZNT9jTNiVSlGxAhwvYgUDdWuqoGI9cT8rvkdrf4M12Hp0bgSw0p/+b+patG4QRGf1w2q+krE9BI/66iYL8MNFd4TNwLsWuB/wM9xvbiHh6h42e80FWC6qvb3318X9/96Ba4D1a24cbp+q6prYsWLG1jxDqA9rh+8h/wOkK8Pf04R72uOG4TyQlz/lJtwHbY+oKobI5ZrhCv5XwK0xPUVuBp4U1X/Gr3fFcmq7CqPm3AdLo5T1fAX7XpxQ0rHchyua/5ZuH+Yj3HVRW8X854RuCEmHsF98VsBk/wTV7QT/HV/jjupjgQQkdtxVV2NcNVcD/u/TxCRH0etY7g/bwTun/yfuJPCFBE5LXJBETkB18nqUH/9d+E6ocwFTolab0tcj9Df4BLjf4BL/e0k6jlc79WviEh5XbS191+3RE1/DddJ7XJcwngQd4HwoYhc4i+zmANDcoznQHXgPVHrGoTrmHUS7ti/D+Afiw9w4yX9EdfL+grgGRGJPiENJ7HjdA9uhNxNEfFc68cayw8c6BX846j3RIr5XcNdZF2K6/j0AVxnvN/gOl99uphtRkvkswZARP4IjMV1mPpPf38n4HpPr4OrFvyTv/jzEfvyR//9NXHJ6z7gK39f3sAlp8/8oUmi3eMv/ybus/+suB3xB2T8EhiC+87f4e/flbje8w+PWHwMcCfuwvYuXLL/nAyo/rUSUiUgIrVwV2DjIgYjexU3CNu5+CeaKN2BwRE3i58WkcdxJ6YrcF/ySIXAaeGRSEXk37gTzBO4E1CkbsDZkQOv+Q0uHsWd2Pqo6g5/+jO4YQf+LiKjVXWb/5YfRexLeB3P4hoP/Bq/W3//KvYVXPLprarzI97y5xjJtQMwVFWLepIWkRBwu4iIqmqMzypaZ1zp6DzgTRG5yq8mKa1sEWns/14POBXX43ghEcfBH+NnGHCLqj4fMf1x3DATj4vIRFX9XkQm4E6M86OqAyN1A45V1aKk4F9F/wt3NRw5NlP4+/FTEXkmoio4oeOkqhNE5B6gdpx4ivjrfF1EXgNWlrAPB33XfNOBdv44UWGP+eu7WUQeiu4JPGofEv2sPRHpjWvg8hFwgarujVj+Pn9/tonIh/5ys2Lsz3Dc8B9/VdVfRrx/Mu7i8s8cmoxbA50jSzdxPIEbt6mXqhb15i4iY/z9uRdXugqPgPuMqt6VwHorlJWQKodLcTexI4eCfg93lVlc4waN0XLpL/7r4BjL/zNyWGz/Sz0S6Cwi0QlpXowTxNm46oV/hZORv54duBNgPSIG/os8yYlIPf/mfhB3FdgnYr09cSell6OSUXg90aNyrotMRr7w8AEdKYG4MaOew1VfXof7rMaIGygwvMwpfjPiRBuWdMYdqx9w1VSvAZuBgVH7dA2QjytRNg7/4I79RNxN8xL3IcK7kcnINwSX3F+K3Ia/nYm4c0JpjlN5ifVdQ1X3hJORiOSISCN/H/6H24cTSlhvMp91uDHLryOTkR+HF5UUizMYVyUYPfzEu7ihXQbGuLgakUgy8pPMRbjhSfZG7c9qXAnwHH/xPbhq1z5+tWlGsRJS5XAT7mT2rX8vJewD4HIRaexX40U6pKpEVdeLyDZiD/oVq2rla/+1XdT8pTGWbeu/LooxLzytaLsi0h5XnXEu7iQQKfIfPHxSmEtiYjXy2Oy/xm3R5jda+AcwWVVf9afVwN0beEtELvPvIx3rv+WTBGNajWsZBa5u/zZ/HYVRy3XBDc73fZx1NSX25x9LrOXCFxfxhhUvGqk0ieNUXmLuq39c7sNdNHTg0NGASxqaPpnPuiMH7oeWVlvcxdLWGPMW4S68GuMGYwxL9DgLLgnf5P/EshJAVQv8kuzjwCoR+Rp3wTYh+n5xOlhCynAi0hY3wmSA4r+g1+AGdKsou8vyZhGph6tzr4uLewHuajU8SNmAMqw+GGdeScOqd8XdI5gRnqCqI0QkGzdo4Tt+Vc/twMeqmugJY1dU9eZYXDXKKBHpGlG1FMBdeMQb5nxhgtuE2Mcp/Blch3seKpaVfpzleZwSVdx37R+4+x+jcAlzI67l2XG4+6Al1f4k+1mHG7pUpET/z8LH9HUOrkWJtCf8i6o+KyJv4xo/9MOVmu8UkVGqemVpg00FS0iZ7wbcF+5HuCG9o/0BV233WNT06Gq28P2DBsQuRXTh0CvArv5rIk3Lw8t048CImsWt50ygBXCjqr4cuaCI/CHqveGTfs8EYiircPVfm8iJqvqyf0X+HK71YVvcfaBSUdW9InIv7sr0d0C4wccyoBMwO3ok0hhKe3Jc5r9uilUVFiWZ41SWmErjWmBG9Ak0qgYhnmQ+66W40Xd74G7+Fyfe/q8EzhORBhH3UcO64lrBRtdyJGq5v+2cBI4p4GpLgBdxw9Bn46qRrxKRv6sbCTot7B5SBvPrlIcDC1T1RVUdG/2Da6nTXUROPPTtMihq2q/81wkxNndv1H2SVrirR41xHyKWD3HNR+8SkfoR66mPu5Ld6S8DB0ox0c1Wz+HQ+xLzcFUaN4pIt+iN+o0eUmUhrinv1eKa2RdR1RdwV6DtcSezr8qyIb9Z8QxguF8KBteSLYuo+wxhItI04s/wSbRRkpsejbuH8DsROeThShE5XA48b5XMcQrH1DDJY7KT5PchHFt0XHU50PqwJMl81v/xX/8U+T8SsWw4jnjHZIK/vfui3ns+0At4J8b90ISo6mbcPeVLReSkWPGJSBP/9zoiUifq/UHchVZxsVcYKyFltnOAo3DVRcUZh2uxdRPuGYqwBbhWTC/gTqBn4Irm03HVHNFqAB+LyBu4uvVbcc92/CSRQP1WRr8EnsI1Y33FnzUcV8d/i6pu96d9AmzAtbxrg+vJoCfuqncBroVgeL2eiNyAK3V9LiIv4RJHA1x1wyRcC6MyU9Wg31BhIvCpvw9zcZ/DRbgSwxT/9U0RGRL5vEspPIxL0g8AN6nqWHHPr9zpJ8T/4q6aWwEn4z7Hdn6sm0VkOXCliKzA3QvZpaoTS9jHb0XkNtzV8WK/VdoaXFVld1xT8a64+14JHyffbNzn9KSIfIpLGlNLuDE/GzhLRH6Fa7btqWp0C9BYxgK3iMgo3P2wpriags1x3+VL8rP+XEQewV3QfeVvcwOupDwE9yzXNtw913xci87d/rSNqjoV11L0euBX/mc5w9/G7bhj95tE4o7jNtzxmiEiI3Df2yx/HwbiEvBDuFLhdBEZj/s/2oqrHbkN1+Dm4zLGUSZWQsps4RuUbxW3gKouxFUpXBl1xfsV7uRyCgceEn0SuLiYK7HrcNUR9+EeQP0OOF9VP0g0WFV9GtcicBvumY4H/d8HRzat9asszsW11LrLj68r7pmOQ0oefhXCibhnbq7w9+Me3D2DmYnGl+A+TMa10BqH+0d+Eney2AkMUNWz/HgH4ao7Sl1C87c1G7jObzyAqt6IOxbh+zRP4E5kO/2/Iw3DXWz8CVdSTigx+9Vvp+NOWrfgntu5C/fg629xJ9ukjxOuGfq/cSfpEX5MXWMsF+l23In0flxJ5I1E9gH37NTfcM/OhT+j54kqgcSTzGetqvfhagy2455Zegz3XX8P/16Pqu7BPfezw5//Bu5BVfzHBs7FtXTt7c+/BvdMUB9VXZto3MXsy1rgeFxjhdNxx+phXIvJibiSMbgagH/jLiwewH2/BwEvAH1VtUz3h8sq4HlVstPYak38J9xVdXgCyz6ESxxtVXV1+UZmTMUTkTNxpahrE3lGyqSPlZCMMVVdC/81kQdMTRrZPSRjTJXkN0wYjKvezcd1o2UymJWQjDFVVRfcfa1duHunlbqn8+rA7iEZY4zJCFZlVwpz5swpxJUud5S0rDHGmCKHAaHjjz8+Zu6xhFQ6WUAgOzv78BKXjCEYdI+uZGdnpzImUwZ2TDKTHZfMU5Zj4r+32FtFlpBKZ0d2dvbhPXv2LNWbwyMgiEgKQzJlYcckM9lxyTxlOSZ5eXkEg8Fia5asUYMxxpiMYAnJGGNMRrCEZIwxJiPYPSRjjDEJ2bm7gNmLt5G/p5DVW3Ppe2wL6tU5pAP0UrOEZIwxJi7P8xg5aQnjp7mhlwoKPabN38rz4xcwuH8Hhp3XmUCg7CPBWEIyxhgT18hJS5gwfQUFhQcGCthX4Jp/T5i+AoBrzj9kTNCk2T0kY4wxxdq5u4Dx05azb3/sob/27Q8yftpydu7ZX+ZtWUIyxhhTrJnz1xHIil8dF8gKMHPed2XeliUkY4wxxdqyY29R9VxxCgqCbM3fV+ZtWUIyxhgT08atu5k5b12Jy+XkZNOwfm6Zt2eNGowxxhwkGPJ4d+ZKXntvMXtLKB0BeCGPvj1alnm7lpCMMcYUWb1+B0+OzkO/2QpAw/q5dGnTiDlLNsZs2JBbM5tB/dpTr3bNMm/bEpIxxhgK9gd580PlrY+WEwy5cfLOPelohl/Ylbq1ax7yHFJuTjZeyGNQv/YMO69zSmKwhGSMMdXcghWbeHJ0Hus27QKgZZO63HF5T7q3b1y0zDXnd2FQv/aM+2Au+XsK6di2JX17tExJySjMEpIxxlRTO3cX8PJ/v+aDz9YAkJ0V4LIBHRl6Vidyah463lG9Ojmc1KUBACJtUh6PJSRjjKlmPM/j0/nreXb8fLb5zbWldUPuvKInbZoflra4LCEZY0w1smnbHp59az6fLdoAQK2cbK69oAsX9m1HdgkPwJY3S0jGGFMNhEIe73+6ilffW8yefYUAnNClKbdddixHNqyT5ugcS0jGGFPFrdngmnIvWeOacjeol8uPB3Xn1J4tUtJLd6pYQjLGmCpqf2GQUZOXMm7qMgqDrin32b1bc8PF3aifwnGMUsUSkjHGVEGLVm7myTF5fLtxJwDNj6jLHZf3oEfHJmmOrHiWkIwxpgrZtWc/r7z7NZNmrQYgKyvApf07cOU5Qm6MptyZxBKSMcZUEZ/OX8dz4+ezZYdryt3hqAbcdXlP2rU8PM2RJcYSkjHGVHKbt+/hufELmLVgPQC5Odlcc14XLj4t/U25k5FUQhKR+sC9wDlAU+A6VZ0lIo2B24HRqrok9WEaY4yJFgp5/G/2al5592t273VNuY/rfCS3X9aDpo0yoyl3MhJOSCLSBPgEaAcs919rA6jqJhG5HmgA/DT1YRpjjIm09vt8nhyTx9ertgBwWN0cfjSoO/16tcyoptzJSKaE9AegGdAH+AbYGDX/beDMFMVljDEmhv2FIcZOXcboyUspDIYAGHDCUdx4cTcOr1f2QfLSKZmEdBHwtKp+JSJHxJi/EhiekqiMMcYcYvGqLTwxJo+13+cD0LRRHe4Y0oNecmSaI0uNZBJSY1xVXXFCQK2yhWOMMSba7r37efXdr3l/1mo8D7ICMKhfB646V6iVU3XapiWzJxuA9nHm98JV5RljjEmR2QvX8+xb89m8fS8A7Voezl1X9KRDqwbpDawcJJOQ3gNuEpEngILIGSLSB7gOeCx1oRljTPW1Zcdenh+/gJnz1wGQUzObYed2ZuDp7cjOzkpzdOUjmYT0O+ASYC7wDuAB14vIj4BLgXXAIymP0BhjqpFQyOPDz9fw8sRF7PKbcvfs2IQ7Lu9BsyPqpjm68pVwQlLVDSJyEvAkcCMQAK7FJab3gNtUdUu5RGmMMdXAtxvzeXLMPBat3AxA/To1uXngMZxx/FGVtil3MpK6G6aqa4GBInIYILiktNwSkTHGlN7+whBvTVvGqA+Xsr/QNeXuf1wrbh54TKVvyp2MUjXPUNUdwBcpjsUYY6odXbOFJ0bnsWaDa8p9ZMPa3D6kB8d3bprmyCpeMj01DAUuVNXripn/KjBRVcemKjhjjKnsdu4uYOb8dWzN30fD+rn0PbYF9erksHvvfl57fzHvzlxV1JT74tPaM+y8ztTOrTpNuZORzF7fCayIMz8I3AVYQjLGVHue5zFy0hLGT1tOICvAvoIguTnZPD9+Ab2PacbiVVuKmnK3bXEYd17ek06tG6Y56vRKJiF1IX6ymQtcXLZwjDGmahg5aQkTpq+gwL8nBLCvIAjAJ3l+U+4aWVx5jjC4fwdqVNGm3MlIJiHVxZWCiuMB9csWjjHGVH47dxcwftryg5JRtEAAHrnrVDq0qt6lokjJpORVwKlx5p+K9dRgjDHMnL+OQAnjEOXUzGbFt9srKKLKIZmENB64XERuip4hIjcClwNvpSowY4yprLbm7yuqnitOQUGQrfn7KiiiyiGZKru/AAOB50XkXiDPn94D6Aoo8KeURmeMMZVQw/q55OZkx01KOTnZNKxffZ4xSkTCJSRVzQf6As8BzYGr/Z8WwDPAKf7zScYYU6316daMgv3xS0heyKNvj5YVFFHlkGxPDduB20XkDtxwFACbVNVLeWTGGFMJFQZDPD1uPl6cs2JuzWwG9WtPvdo1Ky6wSqC0PTV4wA8pjsUYYyq1wmCIv77+JbMWrAegW9tGLFu7jUBWgIKCIDk52Xghj0H93AOw5mBJJyQR6Qh0BI7A9WV3EFUdkYK4jDGmUikMhvjb63P4dL5LRledI1x9budDe2ro0dJKRsVIpuugpsCrwNn+pFhtGj3AEpIxplopDIb428g5RWMXXXm2S0YA9erkcO5JbdIYXeWRTAnpSVwyegaYCmwul4iMMaYSCYaT0TyXjIae3Ymrz5U0R1U5JZOQzgaeVdU7yysYY4ypTA5JRmd1Yti5navF2EXlIZkHY7OAeeUViDHGVCbBYIi//+crPvGT0RVndWLYeZaMyiKZhPQx7iFYY4yp1oLBEP/4z1d8nPcdAJef2ZFrLBmVWTJVdj8FPhKRqao6LhUbF5Fc4Pe4odAb4kpg96vqlBLedykwFOgNNMX1oTcR+IP/rFT08jcBPwfa+ss+rqpPpWIfjDHVSzAY4h9vfMWMiGR07fldLBmlQDIJ6RlgJzBaRNYBKzm0929PVc9MYp2vAJcBjwHLgeHA+yLST1VnxXnf88A64DVcgukO/AQ4X0ROUNW94QVF5BbgWWAM8A/gNOBJEamlqn9PIlZjTDUXDHn88425zJjrktGQAZaMUimZhNQO16w73KN367JsWER6A1cC96rqY/60EcBC4BHg9DhvH6Kq06LWNwfXLP1KXKJDRGoDfwTeVtUr/EVfEJEs4EEReTFWicoYY6IFQx6PvfEV0+d+C8BlZ3TgugssGaVSwglJVdukeNtDgP3AixHb2CsiLwF/FJHmqrq+mFimxZg8HpeQukRMOwP3AO/TUcs+BQwDzgfeLO0OGGOqh2DI47E3v2LaVweS0fUXdrVklGLpHKKwF7BEVXdGTf8c99BtzyTX18x/3RS1DYAvo5adA4Qi5htjTEzBkMfjb37FtDkuGV3a35JReSlVX3Yp0hz4Lsb0cKmoRZLr+xXunlbkmEzNgX2quiVyQVUtEJHNpdhGkWAwiKqW6r27d+8Ox1HazZsUs2OSmdJ9XEIhj1HT1zNnmRvIoN+xjTi5YzZLly5NSzyZoCzHJBiM3wN6UglJRNoD9wJ9cK3ioktYnqq2T3B1tYFYo1PtjZifaFxXAzcBf1bVFVHbKCjmbXuT2YYxpnoJhTxGzzg4GV3Up4mVjMpRMn3ZdQc+AXJxg/G1Axbh7tE0A1YA3yax7T3+uqLVipifSFynAS8B7wK/TXAb4e0ktI1YsrOzESld9yDhK4vSvt+knh2TzJSu4xIMeTwxei5fLnXJaFC/9tx4cTdLRpTtmOTl5cUtJSVzD+n3uNJGDyDctPtuVW0B3AI0AO5IYn3rcVVq0cLT1pW0AhHpAbwDzAeGqmr0nq4HckSkUdT7cnCJtMRtGGOql1DI48nReUz5Yi0AA0+3ZFRRkklIpwLPq0uP4aGnAgCq+gLwPm6Y80TlAZ1FpF7U9D7+a9xuivzqw0nARuBCVd1VzDYAToiafgJu3/MwxhhfKOTxxOg8Jn/hnm655PR23HSJJaOKkkxCqo+rloMD92XqRsyfiUtaiRoL1ARuDk/we264AZipquv8aa1F5KCRrESkGfABrqXcuaoa2bIu0lRgC3B71PTbcA/5vp9EvMaYKiwU8nhyTEQyOq0dN19yjCWjCpRMo4bv8ZtWq2q+iOwCOkXMbwhkJ7oyVf1MRMYAj4pIc1yyux44GtdjQ9gIoB8Hj780CXcP61HgVBGJTIQrwr08qOoeEfkt8JSIjMYlsdOAa4Bfqeq2ROM1xlRd4WT04ecRyWigJaOKlkxCyuPgqq/pwN0i8jmupHUnyfcGfh3wsP/aEHcv6AJVnVnC+8KdvP4yxrxXgaJuh1T1aRHZD/wMGAisxd37+leSsRpjqqBQyOOpsfOKktFFp7a1ZJQmySSk/wB3iEhtVd2Da9E2HfjIn78H+E0yG/f7nPuF/1PcMv1jTEvqm+Lf43ohmfcYY6q+UMjj6XHz+OCzNQBc1LctPx7U3ZJRmiTTddAoYFTE33NFpBswGPdA6vuqujL1IRpjTOqFk9H/ZrtkdGHftvx4sCWjdCpTTw2quhawqi9jTKUSCnk889b8omR0wSltuMWSUdol3MpORIJ+jwjFzR8qIvH7hTDGmDQLhTyefWs+k2atBuD8U9pw66XHWjLKAMk0+y7paNnRNMZkNM/zeHb8fN4PJ6OT23DrYEtGmSKVvX23BvJTuD5jjEkZz3PVdO9/uhqA8052JaOsLEtGmSLuPSQRGYhrKh32YxE5K8aijYCzcH3dGWNMRvE8V00XTkbnnnQ0t1kyyjglNWroyYGHVD3cKK6xRnLdCXyKexbJGGMyhud5PDd+Ae9FJKPbL+thySgDxU1Iqvo74HcAIhICrlHV/1REYMYYU1ae5/H8+AW8O3MVAOf0sWSUyZJp9t0W+KG8AjHGmFTyPI/nJyzgvxHJ6I4hlowyWTIPxq6JniYiNXD3mBoBE1V1QwpjM8aYUvE8jxfeXsh/P3HJ6OzerS0ZVQLJPIf0qIh8EfF3AJgMjAaeAxb4Q0IYY0zaeJ7Hi28vZOLHruOYs3u35s7Le1oyqgSSafZ9HvBxxN8X4xo4/BUIPzB7X4riMsaYpHmex4vvLOQdPxmddaIlo8okmXtIRwHLIv6+GFilqvcB+P3aDUthbMYYkzDP83jpnUW8M8MlozNPPIq7rrBkVJkkU0LKAQoj/j4DV2UXtpLYQ5IbY0y58jyPf09cxNsz3BiiA044iruu6GXJqJJJJiGtBU6GotJQO9zwE2FH4p5HMsaYChNORhOmH0hGPxnai2xLRpVOMlV2bwK/FZEjgW7ADuC9iPm9ODDEuTHGlDvP83j5v18XJaMzjm9lyagSS6aE9GfgFVwpyQOuCw8BLiKHA5cAU1IcnzHGxOR5Hq/892vGT1sOuGR095XHWTKqxJJ5DmkfcJP/Ey0fd/9od4riMsaYYnmex6vvfs1bfjLqb8moSijTAH1hqhoCtqdiXcYYE084GY37yE9Gx7XiHktGVUKxCUlETgdQ1RmRf5ckvLwxxqSa53mMeG9xUTLq16sV91xlyaiqiFdCmgZ4IlJbVQvCf8dZPuDPz05ZdMYY4/M8j9feX8zYqe5xyNN7teTeq6wBQ1USLyHdiEsw+/2/byj/cIwxxtm5u4DZi7eRv6eQVVty+XZjPm/7D72e3rMlP73qOLKzUznGqEm3YhOSqr4S9fer5R6NMaba8zyPkZOW+K3nPAoKPSbP3Uww6CpoTu3Rgp9ebcmoKkpJowZjjEmVkZOWMGH6CgoKQ0XTwskoKwDNG9e1ZFRFldioIVnWqMEYU1o7dxcwftryg5JRpJAHb09fwaVndKRe7ZoVHJ0pbyU2aijFOq1RgzGmVGbOX0eghEYKgawAM+d9x7kntamYoEyFiZeQohsxBIC7gE7ASOBrf3o34CpgKfBkqgM0xlQPnuexaNUW9hUE4y5XUBBka/6+CorKVKR4jRoOasQgIncDTQBR1XVR8x4GZgH1yyNIY0zVFQp5fLZoA6OnLGX52m0lLp+Tk03D+rnlH5ipcMk0argTeC46GQGo6rci8hyuBPVEqoIzxlRdwZDHJ3nfMWbKUtZsyC+aHgiAF+dmgRfy6NujZQVEaCpasgP0xeurbpe/jDHGFGt/YYiP5qxl7NRlrN+0q2j68Z2P5IqzOvHVko1MmL6CffsPrbrLrZnNoH7trUFDFZVMQloFXCMiz6jq3sgZIlILuA5YncLYjDFVyL79QT78bA3jPlrOpm17AFcaOrl7cy4/sxMdWjUAoEubRgAHPYeUm5ONF/IY1K89w87rnKY9MOUtmYT0D+A54AsReQpQf3pn4A6gC3BrasMzxlR2u/fu5/1PVzNhxgq2+Y0RsrICnN6rJZcP6EjrZocdtHwgEOCa87swqF97xn0wl/w9hXRs25K+PVpayaiKS2b4iRdEpC7wB+BpDjQJDwB7gF+o6gupD9EYUxnl7y7gvx+v5J2PV7Jzj+uBrEZ2gDNPbM2QAR1pdkTduO+vVyeHk7o0AECkTTlHazJBUj01qOpjIvIycA5uCHOAlcCH4cH6jDHV29b8vbw9fQXvfbqKPfvcfaCcmtmcd9LRDO7fgcYNaqc5QpOpku46SFW3A2PKIRZjTCX2w9Y9vDVtGR/MXlPU00Lt3BpcdGpbLjmtPQ2sqbYpgfVlZ4wpk3WbdjJ2yjI+mrOWQr/Pufp1anLJ6e25qG9b6tXJSXOEprKwhGSMKZU1G3YwZvIyPs77lpB/R7lh/VwG9+/AeSe3oXaunV5McuwbY4xJyrK1Wxk9eSmzF24omtakYW0uO6MjZ/duTU5N687SlI4lJGNMQhat3MzoyUv5SjcWTWvZpC5DBnSi//GtqGFDQpgysoRkjCmW53nMXfoDoycvZdHKzUXT2zQ/jCvO7MQpPVrYEOImZSwhGWMOUVyHp9K6IVec1YkTuzYlELBEZFIr6YQkInWANsARuIdiD2ID9BlTeRXX4Wn39o0ZelYnju3Y2BKRKTcJJyQ/Ef0DN05SrPcFcL032B1NYyqZ4jo8PaFLU644sxNd2jZKY3SmukimhPQ4cBPwHjAV2Bx/cWNMpku0w1NjKkIyCWkw8IaqDiuvYIwxFWP33v1MmrWa8dMP7vC0X6+WXH5mJ45qamNtmoqXTEKqBUwrpziMMSmwc3cBM+evY2v+PhrWz6XvsS0O6ikhdoenWZx54lEJdXhqTHlKJiF9CXRM5cZFJBf4PXAt0BCYB9yvqlNKeF9vYDjQB+gO1FTVQ+60iusieFUxqzlfVSeVOnhjMojneYyctITx05YTyAqwryBIbk42z49fwOD+HbigbxvembHy0A5PTz6aS/t34IjDrcNTk37JJKT7gIkiMlpVv0zR9l8BLgMeA5bjksz7ItJPVWfFed8FwI+A+cAK3JhM8bwO/C9q2rzkwzUmM42ctIQJ01cUdWoKsK/AJZ6xU5cxZsrSou596tSqwYV9rcNTk3mSSUg/Br4FZovILNywE9FjDHuqelMiK/NLOVcC96rqY/60EcBC4BHg9DhvfwZ4RFX3iMhjlJyQ5qjq64nEZUxls3N3AeOnLT8oGUUK+pmoXu2aDOrXngtPbWcD3ZmMlExCGh7xe1//J5qHa4mXiCHAfuDF8ARV3SsiLwF/FJHmqro+1htV9fsEt1HEH1xwv6oWJPteYzLZzPnrCJTQW0KN7ABXn9eZi09tF3c5Y9IpmRFjU91RVS9giarujJr+Oe6Zpp5AzIRUCg8D/wQ8EfkM+JU9wGuqiq35+4qq54oTDHrs8hsxGJOp0tl1UHPguxjTw0moRQq2EcLdOxoPrMM1yvg5MFlEzlTVj0u74mAwiKqW6r27d+8GKPX7TepV5mOyZfNmAgHwvOKXqVkjwL5d2yrd/lXm41JVleWYBIPxL5zSmZBqA/tiTN8bMb9MVPUb4LzIaSLyJvA18BdiVzsaUymEPI9ZX29jytxNcZORWxZ6tLNni0xmSyohiUhD3D2iPrhm2tHVeJ6qnpng6vYAsZr41IqYn3Kquk5E3gB+LCJ1VHV3adaTnZ2NiJQ2BoBSv9+kXmU7Jut+2Mm/RucV9cBdKyebYNBjf/DQhg25NbMZ1K89PY/tUtFhllllOy7VQVmOSV5eXtxSUjJ92R0NzMRVpW0HDgO2cCAxbQJ2FbuCQ63HVdtFC09bl8S6krUWF3MDoFQJyZh0CAZDvD1jJSMnLS5qVXfmiUdx08XdeHvGyqLnkAoKguTkZOOFPAb1a8+w80pqiGpM+iVTQvoD7gR+JrAA2AgMBWYD9+OacPdLYn15wN0iUi+qYUMf/7U8nxNqh2uyvrUct2FMSq1Zv4PHR81lmT8cROMGtbnz8h4c37kpANec34VB/dof3FNDj5bWxNtUGskkpDOBF1T1IxE5wp8W8Ku87heRbrjnhxLt624sroHBzbgHY8M9N9wAzFTVdf601kAdVV2SRKz4722iqj9ETesAXAXMUNVyqRY0JpX2F4YYO2Upo6cspTDobhZdcEobrr+wK3VqHZxs6tXJ4dyT2qQhSmPKLpmEdATuoVVwzw/BwQ0PPgQeTHRlqvqZiIwBHhWR5rgeF64HjubgZ55G4EpeRQ9a+NWH1/p/9vanPeD/PU9VJ/q/Pyoi7YApuCrC9sCt/ryfJxqrMemybO1W/jUqj9XrdwDQvHFd7rqiJ93bN05zZMakXjIJ6QcgPChKPq41XJuI+Tkk3zLuOtwzQtfh7kXNBy5Q1ZklvK+t/75I4b9fBcIJ6QNcAroLV9241Z/2O1VdlGSsxlSYffuDvPE/1zddyIOsAAzs14GrzxVq5dhAz6ZqSuabvQjoAaCqnoh8DtwuIu/gGgj8GEiqWk1V9wK/8H+KW6Z/jGnTiDFabYzl3gDeSCYmY9Jt0crN/GvUXNb5A+W1blafu4f2olPrhmmOzJjylUxCehv4mYjU9u+9/B730Gm4N20PuDTF8RlTbezZV8iId7/m3U9X4XmQnRXg8jM7ccVZHalZwwZiNlVfMl0HPQ08HfH3VBE5Gbga12JtvKp+mvoQjan65upGnhyTx8atrp1Nh1aH85OhvWjb4vA0R2ZMxSlTZbQ/DEWqhqIwptrZubuAl95ZxOQvvgGgZo0srj63M4P7tSc7O9XdRxqT2UqVkPym002Bhaq6PbUhGVM9zF64nmfGzWPLDteDVpc2jfjJ0J60OtK6+DHVU7JdB10EPM6B1nVnA1NF5EjgU+A+VR2b0giNqWK279zHc+MX8HGe61u4Vk4211/YlQtOaUtWCcNIGFOVJdN1UH9cr9l5uKbVD4XnqepGEVmB663BEpIxMXiex4y53/Hc+AXk73bDcvXs2IQ7r+hJ00Z10hydMemXTAnp/3Dd+YQ7Vn0oav4s3PNExpgom7fv4emx8/n86w0A1K1Vg5suOYazercmELBSkTGQXEI6Efg/VQ0V08vrt0CzlERlTBXheR4ffPYNL09cyK69hQD06daM2y47liMOL/MIK8ZUKckkpCxij18U1hiw4cGN8W3YvIunxswjb5nrTvGwujncMrg7p/VsaaUiY2JIJiEtBk4j4lmkKBdRvj10G1MphEIe/525khHvLS4aWvz0Xi358aDuHF4v1hBgxhhILiG9BPxLRCYD7/jTPBGpgxt99WTsHpKp5tZ+n88To/NYvHoLAI0Oy+X2y3rQ55hYQ38ZYyIl01PDMyLSF3gB+Duuq6A3cL2AZwMvq+rIconSmAwXDIZ4a9py3vhA2e8PnHd279bceMkxNh6RMQlK6jkkVb1GRMYB1wCdcR2cfgaMUNVx5RCfMRlv1brtPD5qLiu+dc+IH9mwNnde3pNecmSaIzOmckm6pwZVHY97HsmYam1/YZBRk5cydsoygiGPQAAu7NuW6y7oSu1cGyLCmGTZf40xpaBrtvD4qDzWfp8PQMsmdbnril50a3dECe80xhSn2IQkIv9XivV5qho9cJ4xVcbegkJGTlrCOzNWuIHzsgIM7teeq87tTG5NGyLCmLKIV0J6KMY0z3+NfojC86d5HDqSqzFVwoIVm3hiVB7rN7uB89o0P4y7h/aiw1EN0huYMVVEvITUNurvesAIoBD4J/C1P70bcC/uwVlr9m2qnN179/PKf7/m/VmrAaiRHWDo2cJlZ3SkZg0bIsKYVCk2Ianqmsi/ReRfuJ4aTlfVwohZ80VkLDADuBX4SXkEakw6zFnyPU+OmcembW7gvI5HNeDuob04uvlhaY7MmKonmUYNVwB/ikpGAKjqfhF5E7gPS0imktm5u4DZi7eRv6eQ1Vtz6XtsCzzgxbcXMvXLtQDk1Mhi2HldGHh6Oxs4z5hykkxCOgyIN55ygxLmG5NRPM9j5KQljJ+2HPAoKPSYNn8rz741n+zsrKJuf7q1O4KfXNGTFk3qpTdgY6q4ZBLSXOBOEfmPqq6InOGPIHsH8FUqgzOmPI2ctIQJ01dQ4PesABQlocJgkBrZAX40qDvnndTGBs4zpgIkk5B+BXwILBKRCYD60zsDA3Et7O5LaXTGlJOduwsYP235QckoWiAQ4PRerSwZGVNBEq4MV9VPgP64UtAVwG/9n8v9aWf4yxiT8WbOX1fiEBBZWQFmzvuugiIyxiTbl91nwCki0gRo509epaobUx6ZMeVkW/4+PprzLfv2B+MuV1AQZGt+vCHAjDGpVKqug1T1B+CHFMdiTLnasHkX46ctZ/Ln38StqgvLycmmYX0bv8iYimJ92Zkqb+V32xk3dRmfzPuOkN/XSN1aNdhTECQUnhCDF/Lo26NlBUVpjInXl10ICAF1VLXA/7v4/17HU1VLcibtPM9j/vJNjJu6jLlLDxTmGzeozaB+7Tmnz9GMm7qMCdNXxKy6y62ZzaB+7W0sI2MqULzkMQKXgIJRfxuTsYIhj9kL1zNu6jKWrd1WNP2opvUZMqADp/dqRQ3/wdZh53UGOOg5pNycbLyQx6B+7YvmG2MqRryug4bH+9uYTLK/MMjUL9fy1kfLWbdpV9H0Lm0aMWRAR07o0vSQ5tuBQIBrzu/CoH7tGffBXPL3FNKxbUv69mhpJSNj0sCq10yltmvPft6ftZp3Zqw4qEVc767NuGxAB7q2LXl8onp1cjipSwMARNqUU6TGmJJYQjKV0pYde3lnxgren7Wa3Xtd94rZWQH6HdeKS8/owNHNrPNTYyqbeI0aVpZifZ6qti9DPMbEte6Hnbw1bTlTvlhLYdA13a6Vk825J7Vh4OntadKwdpojNMaUVrwS0jdYIwaTIZZ+s5VxHy1j1oL1eP638rC6OVx8Wjsu7NuW+nVy0hugMabM4jVq6F+BcRhzCM/zmKs/MO6jZcxfvqlo+pGN6nBpv/ac2bs1tXKs1tmYqsL+m03GCQZDzJy/jnFTl7Ny3fai6W1bHMZlZ3Tk1B4tbEwiY6qghBOSiPQCTlHVp4qZfwcwU1XzUhSbqWb27Q8y+fNvGD9tOd9v2V00vXv7xlw2oAPHyZEldohqjKm8kikhPQjkADETEnA+cCZwaVmDMtXLzt0FvDtzFRM/Wcn2nQUABAJw0jHNGTKgI51aN0xzhMaYipBMQjoR+Fec+dOBu8sWjqlONm3bw9szVjBp1mr2+gPj1cjOYsAJRzG4f3taHVk/zREaYypSMgmpMbAlzvxt/jLGxLX2+3zGfbSM6V99S2HQNZmrnVuDC05pw8WnteOIw63ptjHVUTIJaSPQLc78Y4ifsEw1t3jVFsZ9tIzPFm0omtagfi6XnNaO809pa931GFPNJZOQJgM3i8gLqroocoaIdAVuAt5KZXCm8vM8jy8Xf8/Yqcv4etWB65Xmjetyaf8ODDjhKHJqZqcxQmNMpkgmIf0B12DhCxH5N5DnT+8J3AgUAA+nMjiTuXbuLmDm/HVszd9Hw/q59D22BfUiHk4tDIaYMfc73vpoGWs25BdN73BUA4ac0ZGTujcnO8tazBljDkg4IanqChE5E3gFuD1q9iLgBlVdlsLYTAbyPI+Rk5YwftpyAlkB9hUEyc3J5vnxCxjcvwOXndGBDz//hgkzVvDD1j1F7+vZqQlDBnTk2A6Nrem2MSampB6MVdUvgWNEpCfQ0Z+8VFXnpTowk5lGTlrChOkrDhoCfJ/fQm7s1GWMn7a8aF5WAPr2aMmlZ3SgQ6sG6QjXGFOJlKqnBv/h17yURmIy3s7dBQclnGjBkEcw5FEzO8BZfY5mcL8ONG9ct4KjNMZUVmntOkhEcoHfA9cCDYF5wP2qOqWE9/UGhgN9gO5ATVWNWQ8kIlnAz4HbgObAUuCPqjoqRbtRbcycv45ACfd9srMDXHtBVwb371BBURljqopkug4KUXLv356qJpPkXgEuAx4DluOSzPsi0k9VZ8V53wXAj4D5wAog3ljTfwTuA54HvgQGAm+KSFBVxyYRa7W3NX9fUfVccUJBj3374y9jjDGxJJM8RnBoQqoBtMeVVOaTRDWeX8q5ErhXVR/zp40AFgKPAKfHefszwCOqukdEHqOYhCQiLYGfAY+r6j3+tBdxvUr8TUTeUtXY9U/mELVza5CdFSAYKv66JCcnm4b1cyswKmNMVZFMK7vhxc0TkVOAd3DVYokaAuwHXozYxl4ReQn4o4g0V9X1xcTyfYLbGAjUBJ6OeK8nIs8A/wF6A7OTiLna+nzRBsZOXRY3GQF4IY++PVpWUFTGmKokJX34q+qnwMu4kk2iegFLVHVn1PTPgQDu+aay6gXsUNWlMbYRnm/i2L5zH397fQ4P//sztuXvIzsrQI3s2PeRcmtmM7h/B+txwRhTKqls1LCM5EpIzYHvYkwPl4palDkit40NMaaXeRvBYBBVLdV7d+92QyuU9v0VwfM85q3MZ/zM79m1190T6tCiDkNOa8oXS3cwff4WsgJQUOiRUyNAyINTj2nACW0DGb1fxakMx6Q6suOSecpyTILB+PeXU5mQ+gN7SlooQm1gX4zpeyPml1VFbKPK2bG7kLc+2cDC1a7wWqtmFheddCR9Oh9OIBDg/BOb0O/YRsxfmU/+nkLq165Bj3b1qZ1rXQAZY0ovmVZ21xUzqxFwFm48pJeS2PYeINbd71oR88uq3LaRnZ2NiJTqveEri9K+v7x4nsfUL9fywtsL2bVnPwAndGnKHUN60LjBobm717EVHWH5ydRjUt3Zcck8ZTkmeXl5cUtJyTbR9nD3d6IV4pLRvUmsbz2uSi1aeNq6JNYVbxunlfM2qoSNW3fz1Nh5fLVkIwD169Tkx4O60++4VtbVjzGmQiSTkM6IMc3DDTmxSlV3JbntPOBuEakX1bChj/+aiu6I8nA9lHeKatjQJ2J+tRYKefzvszW8PHERe/YVAtD32Bbccml3GtavVcK7jTEmdZJp9j09xdsei+tB4Wbcg7HhnhtuAGaq6jp/WmugjqouKcU23gb+iesM9h5/fQHgVuAb4LMy7UElt37TLp4YnceCFZsAaFAvl1svO5a+x6aiPYkxxiQnZY0aRKQO0ExVVyayvKp+JiJjgEdFpDmux4XrgaNxPTaEjQD6EVFVKCJH47obAvcsESLygP/3PFWd6G/jW//B2Z+LSC1cTw2DcNV4Q6vrQ7HBkMfEj1fy2vuLKfB7VTjj+FbcPLA7h9XNKeHdxhhTPuImJBEpAK5T1Tf9v+sDI3H9zS2IWnwwLnkk09TqOtwYStfh+rKbD1ygqjNLeF9bDh17Kfz3q8DEiOn3AVuBW3Clr6XA1ao6Ook4q4y13+fz+Ki56JqtADQ+vBZ3XN6TE7o0TXNkxpjqrqQSUg0Ofng2B7gIv4qtrFR1L/AL/6e4ZfrHmDaN2I0rYr0/BPzZ/6m2CoMhxk9bzn/+pxQGXcHw3JOO5oaLulHXHmQ1xmSAtPb2bSrGyu+28/iouaz8bjsATRvV4a7Le9KjU5M0R2aMMQdYQqrC9hcGGTV5KWOnuD7oAgG4+NR2XHt+F2rl2qE3xmQWOytVUbpmC4+PymPt9/kAtGxSj58M7UnXtkekOTJjjInNElIVs29/kJGTlvD29OWEPMjKCnBp/w5cdY6QU9O69jHGZK5EEtIFItLM/70O7mHYy0WkZ9Ryx6cyMJO8RSs3869Rc1m3yT2j3Kb5Ydw9tBcdjmqQ3sCMMSYBiSSkq/2fSLcUs2xJI8qacrB7735GvLeYd2euAqBGdoArzhKGDOhIzRopGWHEGGPKXUkJKVZ3QSaDzNWNPDkmj41bXT+xHY5qwN1De9Gm+WFpjswYY5ITNyGVQ3dBJkV27tnPv99ZyIeffwNAzRpZDDu3M4P6tSc720pFxpjKxxo1VEKfLVzP0+PmsWWHG+qpS5tG/GRoT1odWT/NkRljTOlZQqpEtu/cx/MTFjBjrhtot1ZONtdf2JULTmlLVpYNEWGMqdwsIVUCnufxybx1PDd+Ptt3FgDQo2Nj7ry8J82OqJvm6IwxJjUsIWW4LTv28sy4ecxeuAGAOrVqcOPFx3BOn9Y2cJ4xpkqxhJShPM9jyhdrefGdA8OJn9i1KbdfFns4cWOMqewsIWWgjVt389SYeXylNpy4Mab6sISUQUIhj//NXs3L/13Enn1u4Ly+PVpwy2AbTtwYU/VZQqpgO3cXMHvxNvL3FLJ6ay59j21BvTo5rNu0kydG57FwxWYAGtTP5dZLbThxY0z1YQmpgniex8hJSxg/bTngUVDoMW3+Vp4bv4BubY9g0arN7C90A+cNOOEobh54DPXr2HDixpjqwxJSBRk5aQkTpq+gwE86APsKXLVc3rIfABtO3BhTvVlCqgA7dxcwftryg5JRtKxAgEfvOo0mDetUYGTGGJM5rNOzCjBz/joCJfSkULNmVlGrOmOMqY4sIVWArfn7iqrnilNQEGRr/r4KisgYYzKPJaQK0LB+Lrk58UdrzcnJpmH93AqKyBhjMo8lpArQ99gWeKH4Yxd6IY++PVpWUETGGJN5LCFVgHp1chjcvwO5NWOXknJrZjO4fwfq1a5ZwZEZY0zmsFZ2FWTYeZ0BDnoOKTcnGy/kMahf+6L5xhhTXVlCqiCBQIBrzu/CoH7tGffBXPL3FNKxbUv69mhpJSNjjMESUoWrVyeHk7o0AECkTVpjMcaYTGL3kIwxxmQES0jGGGMyQsDz4jdHNoeaM2dOCAhkZ8d/tqg4waB7SLa07zepZ8ckM9lxyTxlOSb+e73jjz8+ZmHI7iGVTgjICgaDO8qykvCBNZnDjklmsuOSeUp5TA7DnT9jshKSMcaYjGD3kIwxxmQES0jGGGMygiUkY4wxGcESkjHGmIxgCckYY0xGsIRkjDEmI1hCMsYYkxEsIRljjMkIlpCMMcZkBEtIxhhjMoIlJGOMMRnBEpIxxpiMYL19VyARyQV+D1wLNATmAfer6pS0BlZNiciJwHDgDOBoYDPwKfCAqi5PY2gmgoj8EngEmKeqPdMcTrXm/888BJwC1ARWAP9U1VdSsX4rIVWsV4B7gdeBu3HdsL8vIienM6hq7FfApcBk3PF4HugPzBWRLmmMy/hEpBnwALAr3bFUdyJyPjATl4h+C/wM979zVKq2YSWkCiIivYErgXtV9TF/2ghgIe7q7/T0RVdt/QO4WlULwhNEZBSwAJeshqcpLnPAX4AvcRfPDdIbSvUlIofjLqifUdW7y2s7VkKqOEOA/cCL4Qmquhd4CThVRJqnK7DqSlU/jUxG/rRlwCLASkhp5l/EXQP8NN2xGK7GXRD8H4CI1BeRQKo3Ygmp4vQClqjqzqjpnwMBoGeFR2QO4f+TNQU2pTuW6sw/Dk8Ar6pqXprDMXAWsAS4QETWAjuALSLyFxFJ2fjyVmVXcZoD38WYvt5/bVGBsZjiDQNaAvenO5Bq7jqgKzAozXEYpwPuXtErwKPAXOAiXNV2LeCeVGzEElLFqQ3sizF9b8R8k0Yi0hl4CvgEeC3N4VRbIlIfd+/oL6q6vqTlTYWoh2sZfJ+qPuJPe0tE6gG3i8gfVLXMtQpWZVdx9gC5MabXiphv0sRvzfUusBW4XFVDaQ6pOnsAKMA1OjGZIXx+eiNq+khcq7veqdiIlZAqznpctV208LR1FRiLieC3IHofOBzoq6ob0hxSteU37rkH16y4qYiEZ9UCckSkDbBdVbemJcDqaz3QDfg+anr474ap2IiVkCpOHtDZL+JG6uO/zqvYcAyAiNQCJgKdgItUVdMcUnXXFMjBPQqxKuKnD67l4yrcfQtTseb4ry2jprfyX39IxUYsIVWcsbii7c3hCX7PDTcAM1XVSkgVzG8dNAo4GVdNNzvNIRmXcAbH+FkErPZ/H5Gu4KqxMf7rTeEJfkvIm3EPLafkfyfgeV4q1mMSICKjca2G/onrcuN64ETgDFWdmcbQqiUReQzXQ8NEYHTU7J2qOqGiYzKxicg0oIF1HZQ+IvIqrtuzl4CvgAv9n1+q6l9TsQ27h1SxrgMe9l8bAvOBCywZpU1P//Vi/yfSGmBCRQZjTIb7EfAN7kL6emAlcKuqPpeqDVgJyRhjTEawe0jGGGMygiUkY4wxGcESkjHGmIxgCckYY0xGsIRkjDEmI1hCMsYYkxEsIRljjMkIlpCMMcZkBOupwZhKQkSSeYq9rf+6Kmr6HtwT9mOAR1XVhj0xGcMSkjGVx7VRf58G/Bh4Hvg4at4PQBP/9w850CFpE2Ao8BBwCnBueQRqTGlY10HGVFIiMhx4GbhBVV+JMb8NroT0lKreGTG9BvAFri+/3qr6RQWEa0yJ7B6SMdWMqhYCU/w/O6QzFmMiWUIypnrq6L9uSmsUxkSwe0jGVH21RKSx/3sTYBhwCW7AuxnpCsqYaJaQjKn6biJipE/fDOBmVd2XhniMickSkjFV39vAk4AH7AWWq+r36Q3JmENZQjKm6vtWVSenOwhjSmKNGowxxmQES0jGGGMygiUkY4wxGcESkjHGmIxgXQcZY4zJCFZCMsYYkxEsIRljjMkIlpCMMcZkBEtIxhhjMoIlJGOMMRnBEpIxxpiMYAnJGGNMRrCEZIwxJiNYQjLGGJMRLCEZY4zJCP8PY2jfss1eh6sAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(np.squeeze(np.linalg.norm(np.diff(traj_dim3,axis=0),\n", " axis=2)),marker='o')\n", "plt.xlabel('TP')\n", "plt.ylabel('Euclidean distance')\n", "_=plt.title('Euclidean distance between\\nApproach & Retreat trajectories')" ] }, { "cell_type": "markdown", "metadata": { "tags": [ "remove-cell" ] }, "source": [ "## Saliency Map \n", "Source: https://pypi.org/project/tf-keras-vis/" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3.6.9 (tensorflow)", "language": "python", "name": "tensorflow" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 4 }